
AFIT/GCS/ENG/93D-25

AD-A274 087

~~DEc23 1993 U

DOMAIN ANALYSIS AND MODELING

OF A MODEL-BASED SOFTWARE

EXECUTIVE

THESIS
Robert Lawrence Welgan

Captain, USAF

AFIT/GCS/ENG/93D-25

93-31005

Approved for public release; distribution unlimited

93 .12 22 118

AFIT/GCS/ENG/93D-25

DOMAIN ANALYSIS AND MODELING

OF A MODEL-BASED SOFTWARE

EXECUTIVE

THESIS

Presented to the Faculty of the Graduate School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the Accesion For

Requirements for the Degree of NTIS CRA&I
DTIC TAB

Master of Science in Computer Engineering Unannounced 0
Justification

B y _.
Dist. ib-.:tio,- I

Robert Lawrence Welgan, B.S.C.S. Avaiiabitity Codes

Captain, USAF Avail a.!d Ior
Dist Special

December, 1993

Approved for public release; distribution unlimited

Acknowledgements

There are several people who supported me during this research. First, I would like

to thank my thesis advisor, Dr. Hartrum for his sage advice. I also extend thanks to

the other members of my thesis committee: Major Bailor and Major Luginbuhl. Their

insightful and helpful comments during the review of this document improved its quality

greatly. All three of them conspired to improve my briefing ability, too. Most importantly,

I would like to thank my wife Stephanie. Her love and support gave me the strength to do

my best.

Robert Lawrence Welgan

Table of Contents

Page

Acknowledgements ii

List of Figures viii

List of Tables ix

Abstract x

1. Introduction 1

1.1 Background 1

1.2 Problem ... 3

1.3 Scope 5

1.4 Approach 5

1.5 Assumptions 6

1.6 Sequence of Presentation 6

2. Survey of Current Literature 8

2.1 Literature Review Goals 8

2.2 Domain Modeling 8

2.3 Resource Management 11

2.4 Concurrency and Temporal Programming 11

2.5 The Object-Connection-Update Model 14

2.6 Joint Modeling and Simulation System 16

2.6.1 J-MASS System Overview 17

2.6.2 J-MASS Execute Simulation Software 17

2.6.3 J-MASS Simulation Run-Time Agent 17

2.7 Conclusion 19

iii

Page

3. Informal Domain Analysis 20

3.1 Introduction 20

3.2 Informal Specification of an Application Executive 20

3.2.1 Domain Analysis Technique 20

3.2.2 Domain Model 24

3.2.3 ExecutiveoMode Requirements 25

3.3 Domain Model Implementation Goals 26

3.4 Conclusion 28

4. Domain Model Formalization 29

4.1 Introduction 29

4.2 The Role of REFINE in Formalization 29

4.3 Formalization Technique 30

4.4 Impact of New Executive Capabilities 30

4.4.1 Concurrency 30

4.4.2 Simulation Clock and Time 31

4.4.3 Concurrent Data Synchronization and Connections . . . 32

4.4.4 OCU-Specific Events and Delay Modeling 34

4.5 Transformation of Domain Model to OCU Structure 35

4.5.1 The Executive as Related, Top-Level Subsystems 36

4.5.2 The Executive as a Single, Top-Level Subsystem 37

4.6 Conclusion 39

5. Executive Domain Model Instantiation 40

5.1 Introduction 40

5.2 Instantiation Technique 40

5.3 Concept of Operations 41

5.3.1 Registration Phase 41

iv

Page

5.3.2 Execution Phase 42

5.4 Implementation Technique and Additions to Architect 46

5.4.1 OCU Domain Model and Domain-Specific Language . . 47

5.4.2 Architect System Software 48

5.4.3 Architect Visual System 48

5.5 Conclusion 49

6. Architect Executive Validation and Analysis 50

6.1 Introduction 50

6.2 Validating Domains 50

6.3 Testing Technique 51

6.4 Specific Test Cases and Results 52

6.4.1 Event-Driven Sequential Test 53

6.4.2 Time-Driven Sequential Test 54

6.5 Performance Analysis 54

6.6 Summary 55

7. Conclusions and Recommendations 56

7.1 Introduction 56

7.2 Research Accomplishments 56

7.3 Architect Executive Capabilities 57

7.3.1 Application Executive Domain Analysis 57

7.3.2 Application Executive Instantiation 58

7.4 Utility of OCU Structure 58

7.5 Suggestions for Further Research 59

7.6 Final Comments 60

v

Page

Appendix A. Application Executive Domain Model 61

A.1 Introduction 61

A.2 Name Domain 61

A.3 Scope Domain 61

A.4 Obtain Domain Knowledge 62

A.4.1 The OCU Architecture 62

A.4.2 Concurrency and Temporal Programming 63

A.4.3 Domain Specific Application Executive Features 64

A.4.4 Domain Model Services 64

A.4.5 Executive Domain Model Services vs. J-MASS Executive

Services 65

A.5 Choose Model Representation 66

A.5.1 Formal Specification Techniques 66

A.5.2 Scoped Domain Characteristics 67

A.5.3 REFINE Implementation Constraints 67

A.5.4 Domain Model Representation 68

A.6 Identify Objects 69

A.7 Identify Operations 75

A.7.1 Scenarios 75

A.7.2 Operation Descriptions 91

A.8 Abstract Objects 92

A.8.1 Application Executive Object Structure 95

A.8.2 Executive Domain Model Primitives 95

A.9 Summary 116

Appendix B. Test Cases and Results 117

B.1 Introduction 117

B.2 Event-Driven Sequential Sample Test 117

vi

Page

B.3 Time-Driven Sequential Sample Test 122

B.4 Conclusion 140

Appendix C. Application Executive Instances 141

C.1 Introduction 141

C.2 Event-Driven Sequential Executive Subsystem 141

C.3 Time-Driven Sequential Executive Subsystem 142

C.4 Conclusion 144

Bibliography 145

Vita 147

vii

List of Figures

Figure Page

1. Automatic Software Generation 4

2. The Domain Analysis Methods Compared by Prieto-Diaz. 9

3. Events in E .. 12

4. OCU Subsystem Model 15

5. Architect Application Executive Domain Analysis Process 22

6. The Relationship Between Modes in Architect 26

7. Application Executive Object Model 27

8. OCU Application-Specific Events 34

9. An Application Executive for any Sequential Mode Application 46

10. A Circuit Application With One Subsystem Tested the Event-Driven Se-

quential Application Executive Subsystem 53

11. A Circuit Application With Two Subsystems Used to Test the Event-Driven

Sequential Application Executive Subsystem 53

12. The Multiple Subsystem Cruise Missile Test Application 54

13. Application Executive Object Model 74

14. Clock Object Dynamic Model 83

15. Component Obje t Dynamic Model 84

16. Connection Object Dynamic Model 85

17. Event Object Dynamic Model 86

18. Event Manager Object Dynamic Model 87

19. Device Object Dynamic Model 88

20. Device Control Block Dynamic Object Model 89

21. Registrar Object Dynamic Model 90

viii

List of Tables

Table Page

1. The Differences Between Embedding and Extracting Control of a Simulation

from the System Being Modeled 18

2. J-MASS Services Compared to Application Executive Domain Model Services 66

3. Connection Manager Functional Model 93

4. Event-Driven Event Manager Functional Model 93

5. Time-Driven Event Manager Functional Model 94

ix

AFIT/GCS/ENG/93D-25

Abstract

This research adapted the domain analysis techniques of Prieto-Diaz and Tracz to

specify a domain analysis process which was used to conduct domain analysis over the

domain of software executives. This analysis created a set of informal and formal domain

model artifacts. The domain model artifacts were instantiated into two application exec-

utive subsystems. These executive subsystems operated in Architect, a domain-oriented

application composition system based on the Object-Connection-Update (OCU) model.

This research demonstrated and evaluated execution of the instantiated executive domain

model in a series of event-driven and time-driven applications. As a consequence of devel-

oping the application executive for Architect, this research proposes additions to the OCU

model.

x

DOMAIN ANALYSIS AND MODELING

OF A MODEL-BASED SOFTWARE

EXECUTIVE

1. Introduction

1.1 Background

In the past, computer scientists developed software based upon experience and the

requirements of the system which was to use the software. Each time they began a project,

they approached it anew. They were unable to capitalize on successful past development

efforts unless they were members of those successful development teams. As software sys-

tems increased in size and complexity, this method of software development begot software

riddled with errors. Some of these errors resulted in potentially life-threatening situations

(22:2). Researchers at the Air Force Institute of Technology (AFIT) think that introduc-

ing the same kind of formalism that hardware engineers use into the software development

process will lead to more reliable computer systems.

Today, AFIT computer scientists are experimenting with a whole new way of devel-

oping software: a model-based approach. This technique encourages software engineers

to view software development in the same way that hardware engineers view hardware

development. Hardware engineers re-use models of systems to construct physical devices.

They employ practices which are common knowledge among engineers to trade off model

parameters and arrive at a design solution before building the hardware. The application

of hardware engineering principles of design reuse to software development is a central

theme of software engineering. Model-based software development will help people write

correct, reliable programs.

Hardware engineers rely on knowledge gained in previous development efforts. For

example, each time an engineer builds a bridge, toaster, or car, he or she consults a design

book containing generic models with parameters. Unless the engineer is building a product

based on radically new technology, other engineers have encoded the results of previous

basic research and past implementations of these products in these models. Each engineer

does not go into the lab to perform basic research on bridge, toaster, or car technology. The

engineer conducts analysis based on the project requirements to determine the appropriate

model parameter values. The engineer draws the design on paper or encodes it in a

simulation using the parameterized models. The engineer's company tests the design before

it commits resources to build the product. This method is seldom followed during software

development. A software company builds its products without relying upon codified results

of previous design efforts.

The Software Engineering Institute studied the idea of model based software devel-

opment in their Software Architectures Engineering (SAE) project. They developed the

object-connection-update (OCU) model which describes a set of reusable software build-

ing blocks (12). These building blocks can combine to form system models - thus storing

knowledge gained about successful implementations of programs.

The OCU model describes systems which are comprised of subsystems. According

to the SAE project team, the OCU model consists of the following elements that are

repeatedly applied to patterns of requirements to express a design:

* controller - an entity which changes the state of objects

* import area - a location for input data

* export area - a location for export data

* object - an abstract representation of a real-world entity

I/O device handler - a means to communicate with host hardware

* (monitor and control) surrogate - an interface between a controller and the host
hardware

e executive - a program which supervises application execution (12:17)

An application developer combines the controller, object, import area, and export

area elements to form subsystems. When the executive triggers the controller, the con-

troller senses data placed in its import area, reacts based on that data and its current state,

and places data in its export area. When each subsystem reacts, it activates one of pos-

sibly many update functions which changes the state of one or many subordinate objects

2

or subsystems. The executive determines which of the many possible update functions is

actually used. The executive also determines the mapping between import areas, export

areas, and I/O devices. Although SAE project members have not defined an executive, it

plays a key role in OCU model operation.

The Joint Modeling and Simulation System (J-MASS) Program an Air Force response

to the work done by the SAE Project. J-MASS project members intend to apply a version

of the OCU design methodology to create and assemble simulation applications. The

Air Force will eventually use these models to construct all Air Force simulations (27:6).

Software developers will be able to create and modify multiple simulations simply by

altering the interaction between predefined modeling components.

The Knowledge-Based Software Engineering (KBSE) Group at the Air Force Institute

of Technology has developed an application composition and generation system called

Architect. Architect is similar to the J-MASS system in that both of their structures are

based on the OCU model. Architect differs from the J-MASS system in that Architect

is designed to allow users to create model components from domain artifacts modeled as

OCU primitives and combine them to form executable models. On the other hand, J-MASS

requires modelers to use a J-MASS-specific set of modeling constructs (players, etc.) to

describe an application component. Both of these systems allow application developers to

choose from a group of pre-defined model components from one or many areas of interest

(domains). Then, they can view the prospective model's behavior while the design is still

"on-paper." If the model behaves correctly, an application developer may store this model

back into the database of model components. (See Figure 1 (26).)

1.2 Problem

Previous research focused on the ability of the Architect system's underlying soft-

ware architecture to generate domain-independent software specifications (2, 18). The

underlying architecture, the OCU model as defined by the Software Engineering Insti-

tute, is incomplete. Prior to this research it did not contain a fully defined executive

module. Indeed, OCU developers had not yet specified the way each subsystems' update

function could acquire input, execute, generate output, or contend for host machine oper-

3

Exportzaiie

AnalyzeCet nw .itTa
ZDOmain A piiiton ApplicationiApplication Al__o1Ap~ lo

Figure 1. Automatic Software Generation

ating system resources during model execution (12). Furthermore, the previous Architect

implementation of the OCU model also lacked all but the most rudimentary application

executive. Prior to this effort Architect lacked:

* Executive control of entry of data into subsystem import/export areas

* Ability to account for delay during update function execution either in simulation
time or in real time

* Ability to identify some subsystem input data as external to the simulation

* A concept of time - either real time or simulation time (18:6-10)

Although the KBSE group had partially tested Architect, full Architect system test-

ing was not complete (18:6-6). The domains used to test the Architect system were not

completely representative of all the types of simulations that are possible to execute with

the system (18:6-6). The domains implemented by Anderson and Randour contained ob-

jects that could only execute in a non-event-driven sequential mode of execution. In other

words, simulation entities were updated in a fixed order during each execution. Architect

did not permit an application specialist to define event-driven or time driven simulations.

For a system like Architect to be useful to the Air Force, it must be able to run many types

of applications. Architect needed a more powerful executive to model these application

behavior in these execution modes.

Problem Statement

4

The purpose of this research was to specify, implement, and analyze an appli-
cation executive subsystem model which allocates host machine and subsystem
resources during application execution.

1.3 Scope

This research defined an application executive for the Architect implementation of

the OCU model only. It did not involve converting Architect's structure to conform to any

other model-based software development architecture. This research lead to extensions to

the OCU model to make the implementation of an application executive possible. The

wide spectrum language REFINE', together with the object and dynamic models popu-

larized by Rumbaugh (11), were used to specify an application executive domain model.

This research incorporated time as an attribute of the overall composed application. The

application executive complemented the KBSE group's domain models, which were devel-

oped concurrently with the application executive. During this research, the addition of

an application executive to the Architect system resulted in changes and additions to the

Architect domain model definition. The application executive built here does not meet

real-time system constraints. The application executive developed here does not execute

simulations where application subsystems are created and destroyed at run time, because

its proper operation does not depend on the existence of a fixed number of subsystems

during run-time. However, this research did not address the necessary changes to the

Architect implementation of the OCU model that would allow an application specialist

to create applications which contain components that are created and destroyed dynami-

cally. Finally, the application executive model does not allocate application subsystems to

multiple processors.

1.4 Approach

The definition of an application executive subsystem for any composed software

model in Architect required completion of the following steps:

1 'REFIETM is a trademark of Reasoning Systems, Inc.

5

1. Define Domain Analysis Process - In order to create a domain model, domain analysis

must be performed. The first step in this research was to define a domain analysis

process that created a domain model for the application executive.

2. Perform Domain Analysis - After the domain analysis process was defined, the next

step in this effort was to carry out this process and produce a domain model.

3. Instantiate Domain Model - The third phase of this research was the creation of an

instance of the application executive domain model. Tests recorded the behavior of

each application executive instance.

4. Analyze Executive - The final phase of this research involved studying the operation

of the application executive and analyzing the instantiated domain model test results

together with the process used to create the domain model.

1.5 Assumptions

During the specification and implementation of an application executive for Archi-

tect, it was assumed that each application subsystem would be passive and not call its

update function unless told to do so by the executive. The research assumed the appli-

cation executive would not handle object management, but constructs from the domain

model implementation language (REFINE) would manage them instead. A goal of this

research was to develop an executive that could run applications constructed using new

domain models simultaneously developed by other researchers as well as applications in

the old domains defined for the previous version of Architect.

1.6 Sequence of Presentation

Chapter 2 contains the results of a literature review over topics relating to supervi-

sory programs, the OCU model, and the specification and implementation of concurrent

programs. Chapter 3 defines the executive domain analysis process and a summarizes the

informal application executive domain model. Chapter 4 describes the details of the trans-

formation of the application executive domain model into REFINE constructs and the way

the model was ipcorporated into the OCU paradigm. A discussion of the way the domain

6

model primitives were instantiated and included in a composed application appears in

Chapter 5. Chapter 6 discusses the executive test procedure and its results. Conclusions

and recommendations for further model enhancement appear in Chapter 7. Appendix A

contains the detailed results of informal and formal executive domain analysis. Appendix B

shows the instantiated domain model test results.

7

2. Survey of Current Literature

2.1 Literature Review Goals

This review focuses on the characteristics of supervisory and executive programs

which are similar to Architect's application executive. The application executive, like any

other supervisory program, is a resource manager for the rest of its associated application.

This review covers applicable features of resource management software. As a simulation

executive, the Architect application executive must be able to model time in applications

that simulate time-passage. While this research is not concerned with defining a real-time

application executive for Architect, some concepts associated with specifying real-time

systems may carry over to the specification of a non-real-time application executive. For

example, some subsystems may execute concurrently. Architect's structure is based on

the Object Connection Update (OCU) model (12), and the OCU model expects certain

things from an application executive. These expectations figure prominently in the design

and implementation of the executive. This review discusses related research. The U.S. Air

Force Joint Modeling and Simulation System (J-MASS) contains an Execute Simulation

subsystem. A description of the services supplied by this subsystem lends some insight

into the services required by an Architect application executive. One of the products of

this research is a special model of an application executive called a domain model. Domain

modeling and analysis is a good place to begin the review.

2.2 Domain Modeling

A domain is simply an area of study. For example, if one were an expert saxophone

maker, he would be a domain expert in saxophones. Applicable concepts in the domain

of saxophones might include springs, pads, reeds, and brass. Springs constitute a separate

domain of their own. A domain model of a saxophone may include all of these things, or it

may include only one of these things broken down into its constituent parts. It is up to the

domain engineer to determine the level of abstraction in the domain model. Supervisory

programs and computer operating system kernels are this research's applicable domains.

8

A domain model is the result of domain analysis. Lowry describes domain analysis as

"...a form of knowledge acquisition in which concepts and goals of an application domain are

analyzed and then formalized in an application oriented language suitable for expressing

software specifications."(14:648) Lowry does not provide his readers with a method for

performing domain analysis, but Prieto-Diaz does (17). Prieto-Diaz is primarily concerned

with the same area of interest as the builders of Architect-software reuse.

Prieto-Diaz in (16) studied various domain analysis techniques. The results of his

study of domain analysis by Raytheon, the Common Ada Missile Project (CAMP), Mc-

Cain, and Arango are summarized in Figure 2.

Raytheon CAMP McCain Aango

kW*t -wm knim Wm ubmla Din ma"wobnw BouWdwai
W bi d•ame Decopsef•mwcin uml Ddem Au~awd eBdemyon

OWm&OtW Aba bnowni Chei aeaconsm Wen lon
AnWyze busim sy"m snuoms De iteres EnsuM mut Fomk d3stctions
Idens coimon sluce EwnpeAe Mrut chliy tracom

Figure 2. The Domain Analysis Methods Compared by Prieto-Diaz

Prieto-Diaz used common elements from these domain analysis techniques to form

his own domain analysis process, The steps in his domain analysis technique axe:

1. Pre-Domain Analysis

(a) Define the Domain

(b) Scope the Domain

(c) Identify Sources of Domain Knowledge

(d) Define Domain Analysis Goals and Guidelines

2. Domain Analysis

(a) Identify Objects and Operations

(b) Abstract the Objects and Operations

(c) Classify the Abstracted Objects and Operations

3. Post-Domain Analysis

9

(a) Encapsulate the Classified Objects and Operations

(b) Produce Reusability Guidelines (16:66)

Prieto-Diaz's domain analysis technique is analogous to the development of abstract

data types. An abstract data type is a set of entities of interest (objects) and operations

upon those objects (methods). Similarly, domain analysis requires one to reason about

an area of interest (a domain) and to group or encapsulate operations on those entities of

interest into a structure. This structure becomes a domain model. In order to group entities

into a domain, Prieto-Dfaz says that one must determine the boundaries of the domain

(16:64). Using these boundaries, one must apply a classification scheme to the entities in

these boundaries. The result is a group of objects related by common operations that can

be performed upon them. Also, Prieto-Diaz's method requires a domain analyst to express

his domain as a group of related objects in the same way as Rumbaugh elicits an object-

oriented design from a problem specification (11). The similarity between Prieto-Diaz's

domain analysis technique and the development of Rumbaugh object models suggests that

perhaps Rumbaugh object models are an appropriate way to express a domain model.

Tracz, Conglianese, and Young build upon the work of Prieto-Diaz to define a specific

domain analysis technique. They state that there are two sides to the domain analysis

process: analysis of the problem space, and analysis of the solution space (28:2). Prieto-

Diaz is primarily concerned with analysis of the solution space. His domain analysis process

relies on the study of previously implemented solutions. Tracz is concerned with a study

of the problem space. He mentions that domain analysis must be concerned with system

constraints imposed by the real world (28:3). Most all domains must consider real-world

constraints, especially those constraints which relate the domain model's dynamic behavior.

Including these constraints is an important step in the any domain analysis process.

The DIALECT' User's Guide (19:4-1-4-12) discusses another domain analysis process

with an emphasis on the resulting domain model structure. The DIALECT approach re-

quires the domain analyst to configure the entities of interest into an abstract syntax tree

structure based upon the relationships between the entities. In a Dialect domain model,

1DIALECT is a registered trademark of Reasoning Systems, Inc.

10

the entities are called objects, and the relationships are called attributes. This tree struc-

ture permits the analyst to traverse the tree and perform operations on the objects at each

node of the tree. These operations can transform the tree into executable software.

2.3 Resource Management

Architect's application executive must oversee the operation of all software routines

in its associated model. In this way, the application executive is functionally similar

to a computer operating system kernel. Simply stated, an operating system provides

an interface between computer programs and the computer hardware itself. Operating

systems define abstractions of the computer resources including the processor, memory,

and external devices. Computer programmers interact with these abstractions when they

write programs. An understanding of basic computer operating system functions leads to

an understanding of some necessary characteristics of an application executive.

Operating systems have existed in some form since the 1950's, and there are numerous

books and articles which describe their mechanisms in detail (1, 9). The characteristics that

are relevant for this research involve controlling and specifying sequential and concurrent

execution of software routines. Other important characteristics include shakring internal

resources (data) and external resources (files, printers, and the like) during program exe-

cution. Andrews and Schneider divided languages which specify concurrent execution into

three classes: procedure oriented, message oriented, and operation oriented (9:37). Proce-

dure oriented languages rely on procedure calls to operate on objects. Message oriented

languages assign a process called a caretaker to each object. Messages to these caretakers

are the only way to access object state information. Operation oriented schemes also rely

on message passing. However, operation oriented languages combine aspects of procedure

oriented and message oriented languages in that each object has a caretaker associated

with it but it is accessed by a procedure call (9:37).

2.4 Concurrency and Temporal Programming

This research involves specifying an application executive for Architect which serial-

izes execution events. Levi and Agrawala define an event as a "detectable, instantaneous,

11

and atomic change in system state." (13:15) Richard Fugimoto summarized the differ-

ent methods of implementing an event-driven simulator in (7). Alagar and Ramanathan

describe axioms and theorems used to prove correct operation of software which controls

reactive systems (23). Reactive systems are those real-time systems that operate by re-

acting to internal and external events. Alagar and Ramanathan state and prove nine

theorems describing the relationship between tasks and events in an automated system.

These theorems are used to prove the properties of an abstract algebra on the set of events

E. Finally, they specify system constraints on a robot assembler of cups and saucers in

terms of this algebra, and prove the correctness of their specification.

Alagar and Ramanathan describe events in a reactive system by zeroing in on an

essential quality of events: duration. They show the concept of duration in an easily

understood way. They depict each event as a directed line. Overlapping lines in the

diagram show their overlap in time (Figure 3).

a] = bi

a2 lb2

a3 Wb3

a4 Wb4

a5 =b5

Figure 3. Events in E

Mathematically, these relative start and stop times are shown as sequences. Figure 3

describes the following two sequences of start and stop times:

TIMEI(e) = {aj,a 2,a 3,a 4,as}

TIME2 (e) = {b3,b5,b2,b4,bj}

TIME1 lists relative start times for each event and TIME2 denotes relative stop times

for each event. Thus, in Figure 3 event a, started first, but the third event a3 finished first

as shown by point b3 in the diagram.

12

The method of specifying events as a duration, as proposed by Alagar and Ra-

manathan, may provide a means for an application executive to ensure that no causality

errors occur during system operation. A causality error occurs when a subsystem executes

based on information from another subsystem which may have executed too early, possibly

corrupting this information. If the application executive knows how long an application

subsystem will execute, it can encode this information in the event as it is scheduled, or

the subsystems that raise events can include the event duration as they raise them. When

events include a duration, the executive can predict when this application subsystem will

stop raising events. If the executive knows when all subsystems will stop raising events

at a particular time t, it can determine when it is safe to increment the clock. If an ex-

ecutive specifies events as points in time and not as a duration in time, then, as long as

the subsystem notifies the executive when it is finished using the processor, the executive

can calculate which subsystems need to use the processor at a particular time. Specifying

events as points in time and durations of time both allow the executive to decide which

model subsystems can execute concurrently. Fugimoto calls the technique of only allowing

parallel subsystems to execute when there is no chance of a causality error occurring a

conservative approach (7:6). The conservative technique is not without disadvantages. For

instance, a conservative approach relies on the application programmer's ability to predict

which events should precede other events before the software executes (7:16). If the ap-

plication uses durational events, the application subsystem must be able to predict how

long it will use the processor before it actually uses it. Similarly, if an application models

events as points in time, it must predict when to schedule an event that signifies when each

subsystem will finish using the processor before the subsystem begins using the processor.

In response to the criticisms of the conservative approach, researchers have devised an

optimistic technique. Instead of preventing causality errors, systems using the optimistic

technique sense them and recover(7:17). Fuginioto describes what he calls the most popular

optimistic mechanism-Time Warp. Simply stated, Time Warp senses a causality error

when an event which has a timestamp smaller than the processor timestamp executes.

If this happens, the processor's state is restored to its state immediately preceding the

timestamp of the process which caused the roll-back. This type of optimistic mechanism

13

presupposes that the processor keeps a record of the way its state changed over time up

until the system's global time value. This time, called Global Virtual Time (GVT), is the

value of the "smallest timestamped, unprocessed event."(7:17) The processor can discard

all processor's states before GVT, because the processor will never roll back before GVT.

Optimistic mechanisms are not without their disadvantages as well. For example,

they can become very complicated depending on the number of concurrent processes exe-

cuting in the simulation. This complexity also makes them very data intensive, depending

on the number of different states that must be kept for each process. The number of

causality errors that occur during a simulation may cause the processes to roll back so

many times that overall system performance would drop considerably. If there was a way

to limit causality errors through a formal specification of event order, then GVT would be

kept relatively large (recent) during the simulation. This would reduce both the data in-

tensive and complex nature of the simulation. Fugimoto cites the efforts of others who have

tried in a similar way to combine conservative and optimistic methods (7:21). Their efforts

rely on the relationship between events which results in a varying amount of causality

errors throughout program execution. This important choice of whether Architect should

follow a conservative or optimistic approach occurs during domain analysis of the domain

of application executives. The choice of how to specify events in Architect is made during

domain analysis as well.

2.5 The Object- Connection- Update Model

The Carnegie-Mellon Software Engineering Institute's Object-Connection-Update

(OCU) model provides an excellent way to model systems that are normally composed

of subsystems. These subsystems are made up of controllers, import objects, export ob-

jects, and primitive objects. Controllers signal their child objects to update when they are

themselves signalled by the application executive. (See Figure 4 (12).)

An executive, also modeled as a subsystem, signals all the subsystems in the simula-

tion for the purpose of controlling application execution. D'Ipollito wrote about an example

of one such system in (6:260). In this example, each subsystem in an aircraft engine is

modeled as an OCU subsystem, and the executive encapsulates all the subsystems.

14

Figure 4. OCU Subsystem Model

In (12), Lee discusses the OCU model and its operation. He mentions the operation of

the application executive only parenthetically. The section of the draft document describing

the executive is not yet part of the document. However, it is possible to infer something

about the OCU application executive from the description of the OCU model in (12). For

example, Lee mentions that each subsystem in the OCU model is passive and it waits for

the application executive to tell it to execute its function(12:18). This means that the

executive must have knowledge of each subsystem in the model. Also, the executive must

decide when each subsystem should fire. According to Lee, the executive may direct each

subsystem to take any of the following actions:

e Update - change state based on import area state data, export new data to export
area

* Stabilize - normalize object state to system state

* Initialize - create sub-objects if necessary and external interfaces

* Configure - set characteristics of controller and object

* Destroy - eliminate associated objects (12:19)

The OCU executive activates each subsystem using the subsystem procedural inter-

face. The OCU executive also controls data flow through the application. In order to

get and place external data in the import areas of its subsystems, an OCU application

executive must be able to control I/O Device Handlers. These structures exist in OCU

for the purpose of sending and receiving data from external devices (12:23). The applica-

tion executive must be able to map I/O Device Handlers to subsystems in the simulation.

15

Then, each subsystem will have access to the host systems services it needs during the

simulation.

In an draft working paper, Bailor and members of the Software Engineering Institute

developed a tentative structure of an OCU Executive (3). This paper described subsystems

needed to permit any OCU-based system to subscribe to application executive services to

allow the OCU-based software to accept external events, schedule processes, and allocate

processes to distributed processors as necessary. Specifically, Bailor calls for an application

executive to be made up of:

1. Schedule Manager Subsystem Makes and stores subsystem and hardware scheduling

decisions based on host hardware constraints

2. Event Manager Subsystem Records and orders events for the application executive

3. Import/Export Manager Subsystem Controls all application import and export areas.
Ensures that these areas are properly updated over time

4. Control Sequencer Subsystem Executes internal and external interfaces

5. Registrar Subsystem Records initial application-dependent initialization data for ex-
ecutive use during system execution (3:5-6)

A few things are unclear in this rather spa.ýse description of an OCU application

executive. How do these subsystems interact and what controls them? It appears from the

description of the subsystems that they can interact concurrently and are driven by the

event manager's service of each executive event. How does this concept express events?

Are they durational or point events? This description of an OCU executive does not go

into that level of detail. Finally, how do these subsystems maintain time? Bailor's concept

does not provide a separate subsystem to maintain a global clock, but it does not preclude

access to the system clock or prevent an application specialist from including a clock as a

model component.

2.6 Joint Modeling and Simulation System

The U.S. Air Force is currently studying model-based software systems under the

auspices of the Joint Modeling and Simulation System (J-MASS) program. The J-MASS

concept contains an Execute Simulation subsystem which addresses many of the same

problems associated with building an application executive subsystem for Architect.

16

2.6.1 J-MASS System Overview. The J-MASS simulation system allows a user

to build a simulation from a library of existing model components (MC). The user may

form experiments from many simulations. He or she can configure the system to record

whatever data needed from the experiment. Finally, the user enters the Execute Simulation

Mode. Details about the use and operation of the J-MASS system are contained in (21).

This research is concerned with the way J-MASS designers chose to structure the Execute

Simulation Mode software.

2.6.2 J-MASS Execute Simulation Software. The Execute Simulation software

is broken down into a number of components referred to in (21:45-48) as agents. These

agents carry out the following functions:

* Browser Agent Allows the user to select simulations and experiments to run.

* Execution Agent Serves as the intermediary between the user and the simulation.
Allows the user to control and monitor the progress of the simulation.

Experiment Agent Subscribes to host system hardware and software resources prior
to simulation execution. Creates the proper number of Simulation Run-Time Agents.

e Simulation Run-Time Agent Acts as the provider of services to the simulation MC's.
Controls progress of time, intermodule communication, and host resource allocation
of the MC's. It is closest to the concept of what an application executive should be.
As an analog of the Architect application executive, it deserves further study in the
next section.

2.6.3 J-MASS Simulation Run-Time Agent. Before going into how the J-MASS

designers structured the SRA, it is useful to look at some top-level design tradeoffs. Fortu-

nately, the authors of (21) use an entire appendix to discuss one important design consid-

eration for the Simulation Run-Time Agent (SRA): the difference between the modeling of

control by a simulated system and controlling the simulation itself. The designers chose to

eliminate any mingling between simulation control and model components for the reasons

listed in Table 1 (21:D-1).

After concluding that the SRA should not be intermingled with any real-world

model's simulated control functions, the authors describe the remaining two key concepts

which guided their decisions regarding SRA structure: activation and control flow (21:D-

2). They define activation as "...A conceptual event that corresponds to the initiation of

17

[[Embedding Control I Extracting Control

In real-world entity Not in real-world entity
Depends on structure Does not depend on structure
Has knowledge of other things Knowledge is restricted
Limited sub-component Control Unlimited sub-component control
Modules tightly coupled with MC Loose coupling of control to MC

Table 1. The Differences Between Embedding and Extracting Control of a Simulation
from the System Being Modeled

a cycle in which an entity updates its state."(21:D-2) Control flow is "a conceptual mes-

sage conduit that provides instructions ... to the entity which determine the manner in

which the entity's state is updated."(21:D-2) Thus, the design of the SRA focuses on the

specification of control flow to determine the order in which MCs execute.

SRA designers were forced to deal with implementation issues resulting from their

specification of activation and control flow. Specifically, they needed to find some way to

implement conditional MC execution. They defined a grammar which can be evaluated

under predicate logic to describe execution conditions(21:D-14-D-16). They also needed

to find a way to notify MCs that they have been activated. SRA designers, having chosen

a message-passing architecture for the SRA, relied on the concept of a daemon. A daemon

is a system program which serves as a process that acts as a receiving connection(1:67).

With all these considerations in mind, an SRA consists of:

* Simulation Controller - controls SRA

* Scenario Manager - creates simulation objects using simulation script

e Synchronizer - controls simulation time and enforces MC timing constraints

* Spatial System Manager - keeps and updates module location data

* Simulation Run-Time Interconnect - allows multiple SRA's to communicate

* Locus of Control - collection of MC's with common thread of control

* Controller - coordinates LOC execution

* Activator - serializes MC execution

* Data Management Package - holds all simulation/execution data

• Journalizer - performs data reduction as specified by the user

18

e Intercomponent Interconnect - allows the model and executive to communicate with
a given LOC (21:E-6)

The SRA parts listed above are important in that they provide a way to understand

the basic services that the SRA provides to the rest of J-MASS. The Architect application

executive provides the same sort of services. The domain analysis over the domain of

application executives (see Appendix A) uses this information to determine which services

an Architect application executive should perform.

2.7 Conclusion

Although the creators of the OCU model have not specifically defined their concept of

an executive, a review of OCU literature helped define what the OCU paradigm requires

from an executive. An overview of current domain analysis practices and the J-MASS

program pointed the way to the definition of a domain analysis process for this research

effort. It also led to the definition of an application executive domain model.

19

3. Informal Domain Analysis

3.1 Introduction

This chapter defines the domain analysis process used to create an informal domain

model of an Architect application executive. Creating an informal domain model involved

determining what the application executive was required to do by analyzing the execu-

tive capability prior to this effort, proposing additions or changes to that capability, and

analyzing the domain of executive software with these limitations and additions in mind.

Additions to the former application executive capability are proposed in accordance with

the research goals and scope outlined in Chapter 1. This chapter describes the specific

domain artifacts used to create an informal, general model of an application executive for

Architect. A summary of the results of domain analysis together with the object model of

an Architect application executive are presented, while the details of the domain analysis

itself (including the object, dynamic, and functional parts of the domain model) appear in

Appendix A.

3.2 Informal Specification of an Application Executive

Domain analysis over the domain of supervisory programs resulted in the creation

of a domain model of an application executive. The application executive was informally

specified as a list of executive services. The application executive domain model consists

of objects and operations that provide these services. This section details the domain

analysis process used to create a domain model of an Architect application executive,

describes the artifacts used to express the domain model, and presents a summary of the

resulting domain ,.rolel.

3.2.1 Domain Analysis Technique. Chapter 2 discussed the concepts of domain

analysis and domain modeling without giving specifics on how these concepts might be

applied to the domain of executive programs. The purpose of this section is to define

the domain analysis process used in this research. A detailed explanation of the domain

analysis appears in Appendix A. The resulting domain model is presented in Section 3.2.2.

20

A process of reasoning about common characteristics of supervisory programs led

to a domain model of an application executive. Prieto-Diaz agrees that this is a valid

way to proceed. "This is the very process of domain analysis: identifying and storing

information for reusability."(17:47) Chapter 2, which contains information about charac-

teristics of supervisory programs and the specification of those characteristics, served as

the basis of the domain analysis process itself. The major topics in this review resulted

from a top-level study of executive software. Chapter 2 expresses enough information for

the construction of the domain model. However, merely expressing the information is not

enough to transform it into a domain model. This information must be structured and

placed within the context of its reuse environment. "In domain analysis, experience and

knowledge accumulates until it reaches a threshold. This threshold can be defined as the

point where an abstraction can be synthesized and made available for reuse." (17:47)

Prieto-Dfaz cites numerous ways others proposed to conduct domain analysis (17:48-50).

All these approaches share the ideas of specifying a level of abstraction and generalizing

components of a domain into their most essential elements.

Ideas from Prieto-Diaz and Tracz, et al. combine to form the Architect Application

Executive Domain Analysis Process, depicted in Figure 5. The domain analysis process

drawn in Figure 5 adds real world implementation concerns to the Prieto-Diaz domain

analysis process. It forces the domain engineer to consider the goals of domain analysis

when he chooses the domain modeling language. The following is a breakdown of each of

the steps in the Architect domain analysis process.

Name Domain Before domain analysis can begin, the domain analyst must name the

domain under study. The domain under study is a reflection of project requirements.

For the purposes of this effort research requirements dictate the domain of interest.

Scope Domain There is often a blurred line between two related domains. It is not

always clear where one domain ends, and the other begins. During this step, the

domain analyst decides where the domain under study begins and ends. Research

requirements help the domain analyst determine the constraints placed upon the

domain as a result of its need to fit into a particular system. The domain analyst

21

Nam~

Figure D.arwhinect Applcto Domaniv MONnAnlss rs

22IA

must balance the need to consider these constraints without paring down the domain

merely for the sake of convenience.

Obtain Domain Knowledge The best person to perform domain analysis is an expert

in that domain. If the domain analyst is not an expert in the domain he or she

may need to consult persons knowledgeable in a particular domain to obtain enough

information about the domain to reason about it in a general way. During this step,

the domain analyst records key facts about the scoped domain and organizes his or

her thoughts prior to listing domain objects and operations.

Choose Model Representation The result of the domain analysis process is a domain

model. Prior to beginning domain modeling, it is necessary to decide on the best

way to represent the desired domain model in order to provide the greatest ease

of use. Since the domain model needed to be implemented in REFINE, REFINE

was used as the formal specification language (See Appendix A for other details).

However, selecting the formal specification language is only part of choosing the

model representation. The other part involves describing the artifacts that will make

up the informal domain model. The application executive domain model contains

object-oriented analysis diagrams as specified in (11), as well as the formal portion.

These diagrams allow the domain analyst to capture the structure of the objects

that perform executive services as well as their interrelationships. These diagrams

and Rumbaugh's object, attribute, and operation identification techniques help the

domain analyst structure the resulting model. This eases the model's eventual trans-

formation into executable REFINE code.

Identify Objects In this domain analysis process, the domain analyst views the entities

of interest in the same way that Rumbaugh views objects. According to Rumbaugh

"...an object.. .is a concept, abstraction, or thing with crisp boundaries and meaning

for a problem at hand." (11:21) The domain analyst looks for entities in the domain

of interest and describes them and their attributes with short prose statements as

well as object diagrams as in (11).

Identify Operations Rumbaugh views operations in the context of how they change the

state of objects. "An operation is a function or transformation that may be applied

23

to or by objects..." (11:25) Similarly, the domain analyst uses relationships between

objects and his or her knowledge of how these objects behave in the domain to de-

scribe these functions or transformations. The domain analyst expresses the dynamic

relationships between objects using the Rumbaugh dynamic modeling technique.

Abstract Objects While identifying objects in the domain and expressing them graph-

ically, the domain analyst needs to express them more formally and to view them

from varying levels of abstraction using the features of a formal specification language.

The domain analyst augments the object and dynamic models with a functional de-

scription of objects in the domain. These functional descriptions are in terms of

the precondition and postcondition for each object function. The domain analyst

converts the textual and graphical descriptions into REFINE object and attribute

declarations. During this transformation process, he or she may find errors in the

object descriptions or may come up with new objects that need to be elaborated.

3.2.2 Domain Model. Appendix A contains the application executive domain

model details. This section contains key domain analysis results that aid the reader in un-

derstanding the basic functionality of the Architect application executive and its primitive

objects.

3.2.2.1 Application Ezecutive Services. These are the services an appli-

cation executive must provide to composed models, as determined by the results of the

Obtain Domain Knowledge step of the application executive domain analysis process:

1. Event Handling - The executive services events raised by the application during

execution. The executive orders events and may generate events for the application

executive and model components.

2. Registration - The executive gets application-specific requests for executive services.

This involves building executive data structures with information about application

subsystems to enable the executive to keep track of each subsystem's execution state.

For example, the executive subsystem collects the connections in the composed ap-

plication and controls them throughout application execution.

24

3. Activation - The executive activates particular subsystems when it's time for them

to execute. The order of activation is determined by the schedule and by the current

execution state of the component that must execute. Activation is the result of an

event and may cause other events to be generated.

4. Communication - The executive supervises internal application data transfer. It

manages connections between components and provides inputs for processes when it

is time for them to execute.

5. /1O Handling - The executive supervises application calls for external I/O services.

It controls external device interaction with the appliw-ai ion. It manages application

access to device drivers and buffers for those devices.

6. Scheduling - The executive makes an execution schedule for the application. It orders

events and determines how to serialize concurrent events.

3.2.3 Executive Mode Requirements. The application executive provides these

services for four different types of applications. These types of applications differ in the

way in which they execute. Different ways of executing are referred to as modes. The

domain model considers these execution modes:

"* Event-driven sequential

"* Event-driven concurrent

"* Time-driven sequential

"* Time-driven concurrent

These mode descriptions are not necessarily mutually exclusive. Figure 6 displays

the relationships between application execution modes in Architect. Applications employ

a combination of modes which describe what causes a model subsystem to execute (drive),

and how many model components can execute at one time (concurrency). During previous

research, the KBSE group defined a simple application executive which operated in a

non-event-driven sequential mode. Throughout the remainder of the document, when

an example or a discussion refers to one mode characteristic (i.e. sequential mode) it

25

is referring to all possible modes in the same partition (in this case both time-driven

sequential and event-driven sequential modes).

Cocurrency
Drive "

Time-Driven Time-Driven
Sequential Concurrent
Mode Mode

Event-Driven Event- Driven
Event-Driven Sequential Concurrent

Mode Mode

Non-Event-Driven Non-Event-Driven <
Mode

Sequential Concurrent

Figure 6. The Relationship Between Modes in Architect

An event-driven application executes as the result of executive service of events that

are asynchronously raised by the application subsystems and the executive. A time-driven

application contains subsystems that react to changes in the clock. A sequential applica-

tion contains one thread of control. A concurrent application has multiple, simultaneous

threads of control. The application executive provides its services in different modes by

using different combinations of executive domain model primitives to handle these different

modes of operation.

Figure 7 depicts the application executive domain model. These are the objects which

provide the services listed in this section. Detailed definitions of these objects, attributes,

and operations are in Appendix A

3.3 Domain Model Implementation Goals

The domain model described in Section 3.2.2 was transformed into instantiated RE-

FINE primitive objects in the REFINE object base and executable functions also written

26

-m4J bp*I- 0-

"kmwb Oak Da-i-m- - [' l -
Figre . Apliatin EecuiveObjct ode

Nhwy 0*N-VAN27A

in REFINE. These REFINE functions manipulate the objects depicted in the object model

and perform the executive services when requested by the application. Once an executive

is instantiated it should not be reinstantiated each time a new application is built. In-

stead, the instantiation is expressed in a language that describes the domain of application

executives, and the description of the instantiated application executive is saved in a file.

The development of a domain specific application executive grammar is a necessary part of

saving the Architect application executive so it can be brought into each new application

as the application is composed.

The application executive can be structured in a number of ways, according to the

OCU model. Chapters 1 and 2 discussed each OCU structure avalable. This research

chooses from the following methods of structurihg the domain model:

* A set of related subsystems that each perform an executive service.

* A single subsystem that acts as an executive.

* Some combination of the two.

Flexibility is another goal of the Architect application executive. After all, as the executive

is used more and more, future users may want to augment it to change such things as

its communication model or its method of scheduling events. The Architect application

executive structure takes these considerations into account.

3.4 Conclusion

A study of previous application executive capabilities, current capabilities used for

execution, and domain analysis led to an informal application executive domain model.

This informal model was transformed into a formal model expressed as executable REFINE

code and included in Architect. Chapter 4 describes how the informal domain model was

transformed into the formal domain model. Chapter 5 shows how the primitives developed

in Chapter 4 were combined to form instantiations of Architect's application executive

subsystem.

28

4. Domain Model Formalization

4.1 Introduction

The previous chapter presented an informal domain analysis for the Architect ap-

plication executive. It described the domain analysis method used to develop the domain

model. Chapter 3 described how Architect's structure influenced the domain model repre-

sentation technique. The application executive domain model consists of text, drawings,

and REFINE object and function declarations. Although Chapter 3 made a effort at ac-

counting for Architect's OCU basis, the informal domain model depicted there does not

consist of OCU artifacts. This chapter describes the application executive domain model's

formalization as a set of Architect-compliant primitives. It explains the executive's concept

of operations during execution of non-event-driven, event-driven, time-driven, concurrent,

and sequential applications. The suitability of REFINE as a formal modeling language is

presented here as well.

4.2 The Role of REFINE in Formalization

REFIN E is a wide-spectrum computer language. In other words, it can serve as a

specification, design, and implementation language. It is an ideal way to express the in-

formal domain model. It contains constructs called objects. An object is a data type in

REFINE used to describe an entity of interest to the programmer. Objects have associ-

ated attributes that describe qualities of an object. REFINE allows the programmer to

declare set theoretic data types and to reason about them using first order predicate cal-

culus constructs. REFINE allows incremental development of specifications. Its predicate

statements allow a software engineer to declare pre-conditions that must exist and post

conditions that must be satisfied during an operation written in REFINE. This automatic

predicate transform allows a developer to write REFINE code that emphasizes what the

code needs to do instead of how the code should do it. These features of REFINE blur the

line between analysis (the domain model) and design (the implementation). The applica-

tion executive domain model was implemented using REFINE and relied on the predicate

transforms to describe pre- and post-conditions discovered during domain analysis. A de-

29

tailed explanation of REFINE is beyond the scope of this chapter but can be found in (20)

and (19).

4.3 Formalization Technique

The informal domain artifacts were transformed into formal domain artifacts known

as primitives. These primitives correspond to the OCU concept of objects. These objects

were constructed using the techniques described by Randour (18:A-1-All). As such, these

primitives contain descriptions of import objects, export objects, attributes, and update

functions. The executive primitives were constructed using these steps:

1. Declare Primitive Object Classes - The ol-*ct classes depicted in Figure 7 became

the object classes defined in the formal domain model of the application executive.

2. Add Object Attributes - The object attributes described by Appendix A were added

to the formal model.

3. Define Update Functions - The information contained in the dynamic models defined

in Appendix A served as the basis for the formal implementation of each primitive's

update function. Specifically, the states and conditions expressed in the model formed

the pre- and post-conditions used by the update functions to compute new values for

their associated attributes.

4.4 Impact of New Executive Capabilities

During definition of the executive primitives and their update functions, it was nec-

essary to consider the impacts of adding concurrent execution capability, a global clock,

explicit control of data flows, and event handling to the Architect implementation of the

OCU model.

4.4.1 Concurrency. The imposition of concurrency into an application compli-

cates its execution. If Architect is to contain entities which execute concurrently, a number

of difficult questions must be answered about the units of concurrency in the application:

30

"* What is the level of concurrency? Will the application executive control primitives

directly, or will the level of concurrency be at the subsystem level?

"* How will each application subsystem and primitive synchronize its local time with

the simulation clock? How does the clock advance? Will subsystems and primitives

maintain local clocks?

"* How does the executive manage the problem of concurrent producers and consumers

of data?

"* How do concurrent tasks synchronize their data in Architect? What happens to data

that is produced faster than it can be consumed?

At what level do components execute concurrently in the Architect application execu-

tive? According to the OCU model, the application executive only "knows" about top-level

subsystems. As far as the application executive is concerned, concurrency only occurs at

the subsystem level. A domain may contain primitive objects that are designed to execute

concurrently. An application specialist can force the executive to control primitive objects

concurrently by modeling his application as a group of subsystems each controlling one

primitive object. If an application specialist wishes to specify a model with concurrency

below the subsystem level, he must understand the way primitive objects in the domain

interact well enough to specify a method for controlling their concurrent execution.

4.4.2 Simulation Clock and Time. How does the application executive maintain

simulated time? When does the clock advance? If the application specialist chooses a mode

other than non-event-driven sequential, Architect automatically creates a global simulation

clock. The Architect application executive uses the clock to keep absolute simulation time.

Each subordinate component does not read the clock during execution. Each component

raises events, in the event-driven mode, and stamps them with a relative time value. The

event manager primitive keeps a copy of the current clock time in its import area, and it

stamps the event with the correct absolute time before it stores it in its internal event list.

This clock can only be updated to time t + r (where -r is the relative difference in time

between t and the scheduled time of the next event in the event manager's event list) when

the following three conditions are true:

31

1. There are no more time t events scheduled.

2. It is not possible for any top-level subsystem to schedule any more time t events.

3. The next event in the application occurs at r units after the current time.

In event-driven sequential and time-driven sequential modes, the application exec-

utive allows only one subsystem to execute at any time. The executing subsystem may

request services from the executive that are serviced immediately, in the order in which

they axe received, before the clock increments. The application executive changes the clock

time when all events at time t have been serviced. This conservative method of sequential

execution is necessary to prevent causality errors among subsystems. This technique also

prevents the executive from relying solely on the fact that the current implementation is

on a sequential machine to guard against receiving events out of order.

4-4.3 Concurrent Data Synchronization and Connections. How does the ap-

plication executive handle concurrent data synchronization and the producer-consumer

problem? Sections 4.4.1 and 4.4.2 on concurrency and time discuss the way the executive

will manage the flow of control. The executive must also manage the flow of data in the

application. The application executive model in Chapter 3 assumes that all subsystems in

the application are connected using a connection object. Connection objects isolate each

component from the other components in the application. The application executive do-

main model assumes that each component can consist of other subcomponents. In the OCU

sense, a component in the domain model can be either a subsystem or a primitive object.

The domaln model states that connection objects connect subsystems, at the subsystem

level. Connections join primitive objects below the subsystem level, too. However, in the

current implementation, subsystems and primitive objects below the subsystem level do

not use connection objects. Instead, each import area looks to the export area of its source

object or subsystem for input data. The previous implementation of Architect used this

technique throughout each application. By permitting primitive import areas to contain

information about their source exports, Architect allows these primitives access to some

information about their external environment. Clearly, this approach violates the OCU

premise that each primitive knows nothing about its neighbors or the way it is connected

32

to its neighbors (12:19). The KBSE group implemented top-level connections in the model

during this research with the intent to isolate subsystems more fully.

There are three possible ways for concurrent subsystems to communicate, and these

methods become important when one subsystem produces output at a faster rate than an-

other subsystem consumes it. In one technique, the producing subsystem always overwrites

what it produced, whether or not is was consumed. This forces the consumer to get only

the most c, "ent value. This method avoids the possibility of deadlock. Another technique

directs the connection to queue all the data as it is produced. The consumer can consume

all the data when it is ready and thus catch up. This method, too, avoids the possibility

of deadlock. Finally, the producer can block on subsequent execution if its initial output is

not consumed. Although this method may lead to deadlock, the application domain may

call for this method to be used.

There are domains and applications where one method is preferred over another.

Consider the following: an application models a barber shop. Process A is a customer

arrival process, and Process B is a haircut process. If Process A outputs an arrival every

five seconds, and a haircut takes fifteen seconds, then the second arrival will not get serviced

unless the arrivals are saved in a queue. In this case, it is best to save all inputs to process

B in a queue. Secondly, consider a missile with a radar system. The radar system updates

the missile every five seconds, but the guidance algorithm takes fifteen seconds to complete.

At the end of the fifteen seconds, the guidance system uses the most current data-it is

the best data in this case. In other words, it is best to throw away all but the most recent

data. Finally, suppose an application contains a controller that sends a command to a tank

that controls tank pressure, and the tank sends the current pressure back to the controller.

If the controller operates at a faster rate than the tank, and subsequent execution of the

controller depends on the results of the tank, the controller must block to allow the tank

to catch up and reach a stable state.

An application executive that can operate in all domains would allow the application

specialist to specify which concurrent communication model he prefers. The Architect

application executive, by virtue of only only allowing sequential execution, implements

33

the third method of controlling concurrent communication. The executive automatically

blocks all processes but the consumer process, which consumes the data in the connection.

4.4.4 OCU-Specific Events and Delay Modeling. Implementation of the applica-

tion executive together with the domain models developed by Waggoner (24) resulted in

the addition of a number of application events to the event hierarchy depicted in Figure 7.

These events are a by-product of Architect's OCU basis, which the application executive

incorporates.

EVen

OSjd-amm
EV-TkmP"

I a I

Figure 8. OCU Application-Specific Events

Figure 8 shows these specializations of the application event and esecutive event.

These events are:

34

* New-Data Event - This event notifies a model subsystem that new data has arrived

in its top-level subsystem import area. The subsystem responds by generating an

update event for the primitive that consumes that data.

@ Update Event - This event causes a primitive update function to execute.

* Set-State Event - This event executes a primitive's set-state function. A primitive

schedules this event for itself when it wants to update its state at some future time.

The application executive uses application events such as set-state events to control

when the state of a component changes with respect to time. Controlling the changing of

state over time is an important concept because when a component executes at time t, its

results depend on its state at time t. However, between the time the component is initially

activated and the time when it produces its output, the component is in a transient state.

If a component's output is queried during its transient state, invalid output can result. It

is the domain and application specialist's job to define application events which deal with

transient component states. The set-state event handles this problem. An application

subsystem can change its internal state at time t and schedule a set-state event for r time

units later. The set-state event changes the component's output state at the same time the

component broadcasts its output to the connection(s) it feeds using a transmit event, thus

controlling the nature of this transient state. However, the order in which the transmit

and set-state events are serviced is important. If the transmit event is serviced before the

set state event, it may output the wrong data.

4.5 Transformation of Domain Model to OCU Structure

The application executive domain model specifies objects and operations which per-

form the executive services listed in Chapter 3 and detailed in Appendix A. The OCU

architecture provides a useful method of encapsulating these objects and operations either

into a set of related subsystems or a set of primitives, or some combination of both. This

section explains the rationale behind the present application executive design.

Initially, it seemed appropriate to build one subsystem per application executive

service, as Bailor suggested in (3). This method of encapsulating application executive

35

services has many advantages. It allows easy replacement of application executive services

that operate in different modes. It permits the application executive designer to keep many

of the same subsystems regardless of the application execution mode. The domain analysis

in Appendix A pointed out that although each model component would behave differently

in an event-driven application than in a time-driven application, the executive still services

events when running a time-driven application. A time-driven executive services events

as a result of changes in the clock. A time-driven application requests executive services

using events that axe serviced by the executive. An event manager subsystem would be

useful in both the time-driven and event-driven modes. Similarly, a connection manager

would be useful in all modes where top-level subsystems communicate with each other.

Assume that every subsystem in an application must operate using executive services.

This would mean that an abstract executive composed of top-level subsystems that each

perform a particular service would need to communicate using its own executive services.

It would also be required to use its own services to keep track of each executive subsystem's

state.

4.5.1 The Executive as Related, Top-Level Subsystems. The following is an exam-

ple of how the event manager subsystem, the clock subsystem, and the component manager

subsystem might interact to service a start event if the executive were implemented as se-

quential, top-level subsystems. Recall that the start event sets the global clock to the start

time and signifies the beginning of execution. This scenario assumes that the application

specialist has placed a start event on the event queue prior to execution. Although this

example considers the event-driven mode of operation, it also applies to the time-driven

mode.

1. Event Manager services start event.

2. Event Manager schedules a transmit event to send the start time to the Clock Man-
ager.

3. Connection Manager services transmit event for itself, to transmit starting clock time
contained in the event.

4. Connection Manager gets start time from Event Manager's export area and writes it
to the connection object which links the event manager and the clock.

36

5. Connection Manager schedules a receive event for the connection to the Clock Man-
ager.

6. Event Manager services receive event for the connection to the Clock Manager.

7. Connection Manager writes the data to the Clock Manager.

8. Connection Manager schedules update event for Clock Manager.

9. Event Manager services update event for Clock Manager.

10. The Clock Manager's controller updates the subordinate clock object primitive. Now
the clock object's export area contains the new clock time which may be transmitted
to event manager using a sequence of transmit and receive events not depicted here.

11. The Event Manager has now serviced the start event.

4.5.2 The Executive as a Single, Top-Level Subsystem. Currently, the Architect

application executive consists of a different application executive subsystem for each mode

of operation. This approach requires the use of a specialized executive subsystem controller

that routes update events scheduled by executive primitives for executive primitives. The

following scenario illustrates the interaction between primitives for an event-driven con-

current application executive as it services a start event.

1. Executive Controller updates Event Manager.

2. Event Manager services start event.

3. Event Manager sets primitive export with proposed start time.

4. Clock Manager import is updated.

5. Event Manager schedules update event for Clock Manager.

6. Event Manager passes this update event up to the Executive Controller.

7. Executive Controller routes update event to Clock Manager.

8. Clock Manager sets itself to the current time, completing service of the start event.

9. Executive Controller updates Event Manager again.

The example scenarios listed above illustrate the major disadvantage of building an

application executive as a collection of related subsystems-complexity. The number of

events generated by the set of executive subsystems for each other, far outstrips the number

of events generated by a single executive subsystem that contains primitives that provide

executive services. This complexity also obscures which events control the application and

which events control the executive. Both update for the application and update events for

37

the executive are placed on the executive's event list. If Architect's application executive is

implemented as a single subsystem, the events which control the executive could be passed

"up" to the subsystem controller, while the application service events (transmit and receive

events for the model components) flow "across" the primitives.

Analysis of the way application executive objects interact during the servicing of

one event reveals their close cooperation. For example, in event-driven sequential mode,

when the event manager services an application event, it calls the subordinate application

component update function. It collects events from the subsystem and schedules them.

As a result of event service, the executive may schedule update events for the connection

manager (when servicing transmit and receive events) or for the clock manager (as shown in

the above scenario) This close interaction between executive objects is another reason why

the Architect application executive is implemented as a single subsystem that encapsulates

its services in a group of related primitives. Specifically, an application executive controls

some or all of these primitives:

" Component Manager Primitive - This primitive keeps the execution state of all appli-

cation subsystems by keeping set a of object control blocks (OCBs). This primitive

contains the method necessary to maintain the set as well as modify the attributes

of the individual elements.

" Device Manager Primitive - This primitive keeps the execution state for all in-

put/output devices used by the application using a set of device control blocks.

This primitive contains set maintenance methods similar to the Component Man-

ager Primitive.

" Event Manager Primitive - This primitive handles all events for the application. This

primitive contains an update method that adds events to an event list, services the

event, and removes the event from the event list. This primitive employs REFINE

function calls that pass control to model components and collect events raised by the

components during execution.

" Connection Manager Primitive - The Connection Manager Primitive contains a set of

connection objects that link subsystems in the application. This primitive contains

38

update methods that return connection state when needed. The methods also read

data from and write data to component import and export areas directly. This

primitive raises events that must be placed on the event list by the event manager.

e Clock Manager Primitive - This primitive keeps time for the application.

The domain model presented in Chapter 3 contains a few more objects than those

mentioned above. The registrar object is absent from the application executive subsys-

tem. The dynamic model drew a clear line between creation of the application executive

and the execution of the executive. Similarly, Architect draws a line between composition

and execution. The application specialist composes an application by interacting with

the Architect visual system (5). After the application specialist composes the application,

Architect executes the application using the predefined application executive. Thus regis-

tration of model components is carried out by Architect during and immediately following

composition. Therefore, the application executive does not contain the registrar explicitly

as a primitive object, but the registrar is included implicitly as a function which is part of

Architect. The device object and component object depicted in the application executive

object model are part of the composed model and not part of the executive. These objects

are constructed by the domain engineer as part of domain analysis. They are brought

into the application by the application specialist during model composition. The executive

controls them like other subsystems. Since they axe also not application executive objects,

they are not in the application executive subsystem.

4.6 Conclusion

The informal domain model was transformed into formal domain model primitives

which conform to the Architect paradigm. These domain model primitives encapsulate

object attributes and methods. Chapter 5 describes how these primitives are combined to

form a set of single subsystems that act as the Architect application executive.

39

5. Executive Domain Model Instantiation

5.1 Introduction

The set of domain model primitives expressed as a collection of REFINE object, at-

tribute and function declarations describes the services an executive subsystem provides.

The primitives do not constitute an executive unless they are joined together under the

control of a subsystem controller and they become an Architect subsystem. This chap-

ter examines the process of joining these primitives together. It describes the results of

composing the primitives to form an event-driven sequential and a time-driven sequential

executive. Although there are no concurrent executive subsystems in Architect, this section

explains how one may compose executive domain model primitives to form event-driven

concurrent and time-driven concurrent executives.

5.2 Instantiation Technique

When an application specialist composes an application in Architect, he or she uses

the visual system interface. The application specialist composes icons representing primi-

tives into graphical representations of subsystems. In the domain of application executives,

there axe no icons associated with each of the primitives. This is because when Architect is

in normal use, the application specialist does not see the application executive subsystem.

The application executive subsystem is brought into the current application automatically

and is invisible to the user. The lack of icons for each executive primitive prohibited using

Architect's visual system to compose the application executive primitives into a subsystem.

Each application executive subsystem was instantiated in the following manner:

1. Determine which executive services are required for each of the four modes of exec-

utive operation.

2. List the corresponding primitives that perform these services whether separately or

together.

3. List thM primitive interface types, as defined by the data-type and data-category

fields in their respective import and export areas.

40

4. Define a file for each proposed executive subsystem containing definitions of the

primitives required for that particular mode, the import and export areas for each

of these primitives, and the subsystem that controls each of these primitives.

These subsystems were defined by parsing in a file containing OCU and application

executive domain-specific grammar. However, except for the lack of icons, there is no

reason why the visual interface could not have been used to instantiate these models. The

following sections detail the results of using the instantiation method listed in this section.

5.3 Concept of Operations

The primitives described in Section 4.5 work together with the application subsys-

tems. They provide a number of services commensurate with the mode of application

created by the application specialist. The application executive primitives are created and

connected to the model they are controlling. This section discusses the two phases of exec-

utive operation: registration and execution. During the discussion of the execution phase,

it gives the results of the instantiation method described in Section 5.2.

5.3.1 Registration Phase. The application specialist composes the desired model.

He selects the desired mode of operation: event-driven sequential, time-driven sequential, or

non-event-driven sequential. Architect automatically reads a file containing a pre-defined

executive subsystem and places it in the current application specification abstract syntax

tree. The application specialist then defines the control routine for the application. The

format of the control routine depends on which mode the application specialist chooses.

In the case of an event-driven application, he or she edits the list of events which will

occur during execution. In the non-event-driven sequential mode, he or she specifies an

application update function similar to the update functions defined by (2, 18). In the

time-driven sequential mode, the application specialist defines an event for each subsystem.

Then the executive forces the model to respond to changes in the system clock.

41

5.3.2 Execution Phase. Following registration, the application is ready to exe-

cute. The sections below describe which executive primitives are required during each mode

and how the primitives interact to manage flow of data and control in the application.

5.3.2.1 Non-Event-Driven Mode. This mode requires only one executive

service - control of subsystem execution order. Architect operates on a list of subsystem

update calls in the manner described in (2, 18). This service is implemented by executing a

list of update calls contained in an application's application object. Because the executive

function in non-event-driven sequential mode is handled by the application object, the ap-

plication executive does not exist as a separate subsystem. Architect runs the application

by reading and executing each application subsystem update statement in the Application

object sequentially. This method of operation is identical to the way Architect worked as

described by Anderson and Randour (2, 18). It does not include the use of connection

objects at any level in the composed model. The KBSE group included this mode of op-

eration to keep Architect backward-compatible enough to allow group members to use the

baseline established during previous research to continue with research aimed specifically

at extending Architect's technology base. (See Warner (25) for more details on the use of

this execution mode and on technology base extension.)

5.3.2.2 Event-Driven Concurrent Mode. An executive running an applica-

tion in event-driven concurrent mode requires the following primitives:

"* Event Manager

"* Connection Manager

"* Component Manager

"* Device Manager - if there are any I/O devices in the model

"* Clock

Although Architect cannot currently execute an event-driven concurrent application,

this section explains how the application executive subsystem might work during execution

in the event-driven concurrent mode.

42

The following is an example of how the event manager primitive, the clock primitive,

the connection manager primitive, and the component manager primitive interact to service

an update event. This scenario assumes that the application specialist has placed a update

event on the event queue. Although this example considers the event-driven concurrent

mode of operation, it also applies to the time-driven concurrent mode.

1. Event Manager primitive's current-event attribute contains an update event for com-
ponent A.

2. The Event Manager sets its export with the value in the update event for use by
other primitives.

3. The Event Manager primitive passes control up to the executive controller as it
schedules an update event for the connection manager, the component manager, and
itself.

4. The executive controller updates the connection manager primitive.

5. The connection manager primitive checks the status of Component A's downstream
connection and makes sure it is Consumed.

6. The connection manager update terminates and returns control to the executive
controller.

7. The executive controller updates the component manager primitive.

8. The component manager primitive changes the state of component A's object control
block based on this request to execute and its current state.

9. The component manager passes control back to the executive controller.

10. The executive controller updates the event manager so it can now, armed with the
necessary component and connection status information, service the current event
(which is the original update event).

11. The event manager services the update event depending on the component and con-
nection status information.

12. If the proper conditions exist to pass control to the component, the event manager
calls an Architect function that passes the update event down to the subordinate
component and allows it to execute.

13. If the event cannot be serviced at this time, it is placed on the event manager's
suspended list.

14. The event manager deletes the update event from the event list, revealing a new
current event.

15. This cycle repeats itself until the event manager services a stop event.

43

5.3.2.3 Time-Driven Concurrent Mode. At present, Architect's application

executive cannot run applications in a time-driven concurrent mode. If Architect could

run models in this mode, it would need the following executive primitives:

"* Event Manager

"* Connection Manager

"* Component Manager

"* Device Manager - if there are any I/O devices in the model

"* Clock

These are the same primitives required in event-driven concurrent mode. The only dif-

ference between these two modes of operation is the way the event manager operates. In

time-driven concurrent mode, the event manager contains a list of application events which

occur during one clock "tick." (A "tick" is a change in the global absolute time.) The

executive simulates concurrency by allowing more than one component to execute at a

given time t. When all the events on the event list have been serviced, the event manager

causes the clock to tick and re-services the application events processed during the previous

"tick." The event manager removes the executive events (e.g. transmit, receive, activate)

that the application primitives and executive primitives schedule during execution. The

model components may also add application events to or take application events away from

the list of events the event manager services each time the clock changes. This capability

allows the application specialist the freedom from forcing his model components to execute

every clock tick. The executive primitives communicate in time-driven concurrent mode

in the same way they communicate in event-driven concurrent mode.

5.3.2.4 Event-Driven Sequential Mode. An application specialist can cur-

rently execute event-driven sequential applications using Architect. This mode's executive

subsystem consists of:

"* Event Manager

"* Connection Manager

44

* Clock Manager

These primitives are sufficient because of the restrictions this mode of operation

places upon the application. In this mode, no two subsystems are permitted to execute at

any one time. Sequential execution precludes the possibility of one subsystem producing

data faster than it can be consumed. No component manager is needed to monitor the

execution state of each application subsystem. Similarly, no device manager is required

to monitor device status, because no device will put data into or take data from the

application at a rate greater than the application executive will allow. The application

specialist must schedule update events for input devices. When an output device receives

new data, it will schedule an update event for itself. Application specialists must schedule

at least one update event to begin application execution.

5.3.2.5 Time-Driven Sequential Mode. Architect can execute time-driven

sequential applications. A time-driven sequential application's executive subsystem con-

trols these primitives:

"* Event Manager

"* Connection Manager

"* Clock Manager

This small subset of executive primitives is sufficient for operating time-driven se-

quential applications. Time-driven sequential mode requires the executive to enforce the

same constraints on execution as an executive in event-driven sequential mode (see Sec-

tion 5.3.2.4 above).

The domain model described in Appendix A discusses how a time-driven executive

also uses events to control communication between and activation of subsystems. The

time-driven sequential application executive operates in the same manner as the event-

driven sequential application executive with two exceptions: event management and clock

management. In time-driven sequential mode, time is provided, via a connection object,

for all primitives in the application that request it during registration. In the time-driven

sequential mode, the event manager does not delete application events from the event list

45

unless explicitly told to do so by the application. (An application notifies the executive

to remove the application event by raising a remove event.) Instead, the event manager

services each application event in a round-robin fashion until the clock is at the value con-

tained in the stop-time attribute of the stop event in the event list. The event manager

deletes transmit and receive events after the event manager and the other primitives com-

plete servicing them. Thus, in time-driven sequential mode, all applications must contain

a stop event or they will not terminate. Figure 9 shows how primitives are related in an

event-driven and time-driven application executive. The figure shows the only difference

between the time-driven sequential and event-driven sequential application executive - in

the time-driven executive, the clock creates a transmit event to broadcast the current time

to the application subsystems.

S(NOW-Event)

Event Manager

SimulationTim. Current-Event
rNew-Event J Now-Time

Sc~onectionManage•

Gurreqnt-Event r~ NýwEnt

Figure 9. An Application Executive for any Sequential Mode Application

5.4 Implementation Technique and Additions to Architect

During development of the two application executive subsystems, it was necessary

to augment the previous implementation of Architect. Addition of an executive required

changes to the following areas:

46

1. The OCU grammar and OCU domain model

2. The Architect system software

3. The Architect Visual System Interface (AVSI)

5.4.1 OCU Domain Model and Domain-Specific Language. According to Lee, an

application executive is a specialized subsystem that controls OCU model execution (12).

As such, the application executive is a part of the OCU domain model. Addition of the

application executive to Architect during this thesis cycle resulted in the addition of the

following artifacts to the OCU domain model:

* Event Objects

* Connection Objects

e A Descriptor Object

* Executive Primitives

During composition, Architect's visual system creates an abstract syntax tree rooted

at a node called a Spec-Obj. As the application specialist includes items from the tech-

nology base in the current application, Architect adds children (Spec-Parts) to this root

node. The previous implementation contained application objects, subsystem objects, and

primitive objects as possible Spec-Obj children. The current implementation of Architect

contains an additional Spec-Part: A Descriptor-Obj.

The Descriptor-Obj serves two purposes. It contains an attribute which describes

the mode of the application. Second, it provides a place for Architect to store connection

objects as the application specialist creates them. When Architect loads the predefined

application executive, it copies the set of connection objects into the executive's connection

list. The executive manipulates the connection list during execution.

The method of including pre-defined application executive subsystems in each com-

posed application requires inclusion of application executive domain-specific grammar in

the OCU architecture-specific language (ASL) grammar. Currently, Architect uses this

grammar to parse executive subsystem definitions into the REFINE object base from a file.

47

Gool (8) discusses changes to the Architect implementation of the OCU model during this

research.

5.4.2 Architect System Software. Each application subsystem in Architect uses

the same Architect system software to drive its controller. This routine gathers the events

passed to it by the executive and routes them to their respective primitives. Then, this

router collects them and passes them to the executive for inclusion into the event manager

primitive's event list. The executive subsystem's controller works differently.

As a specialized subsystem, the application executive requires a special Architect

system software routine to run it. This function, called Execute-Exec-Subsystem, routes

events raised by the application executive primitives for other primitives during execution.

It accounts for the fact that in order to service an event, many executive primitives must

cooperate before servicing the next event by not updating the event manager until all other

executive primitives finish servicing the current event, as output by the event manager.

This routine operates in a manner similar to Gool's Execute-Subsystem (8). It accepts

events from subordinate primitives, and it acts as a control routine for the executive

subsystem by re-directing these events to the appropriate executive subsystem. Execute-

Exec-Subsystem operates differently from Gool's function by not passing events up to the

calling routine. Execute-FTec-Subsystem operation conforms to the OCU idea that the

executive should act as a specialized subsystem by controlling the executive subsystem in

a different way than other model subsystems.

5.4.3 Architect Visual System. The application executive requires the application

specialist to enter execution information while composing an application. The user must

enter the application mode and depending on the mode, must define an initial set of events

or update statements. Cossentine modified the Architect Visual System Interface (AVSI)

to allow the user the opportunity to perform these activities (5). These modifications

consisted of additional menus and prompts that the user interacts with prior to execution.

For example, Architect parses the executive subsystem from a Unix file and initializes

connection objects during these interactions with the user.

48

5.5 Conclusion

Architect's application executive consists of a single subsystem that provides the ex-

ecutive services derived from the domain model documented in Appendix A and described

in Chapter 3. Appendix C contains the application executive subsystems for event-driven

sequential and the time-driven sequential execution modes. Other executive subsystems

that control time-driven concurrent and event-driven concurrent applications can be in-

stantiated using the method and suggestions given in this chapter. Chapter 6 outlines the

test cases and procedures used to test the two application executive subsystems.

49

6. Architect Executive Validation and Analysis

6.1 Introduction

Chapter 5 described instantiations of the Architect application executive subsystems

in each mode of execution. This chapter explains the method used to verify that the appli-

cation executive performs correctly in event-driven sequential and time-driven sequential

mode. It describes the applications used to test each application executive subsystem. It

lists the expectations and the results of each test. It shows why these test are sufficient to

demonstrate correct operation of the Architect application executive.

6.2 Validating Domains

Small applications in the domains of logic circuits and cruise missiles validated the

operation of the application executive in the event-driven sequential and time-driven se-

quential modes. Waggoner constructed the logic circuit domain primitives used in the

event-driven sequential executive test. Waggoner's logic circuit primitives are similar to

those developed by Anderson and Randour with two exceptions: they generate events and

they use their delay attributes to generate events for future times. A detailed discussion

of all primitives in the event-driven logic circuit domain can be found in (24). These

primitives made up the small logic circuit used in the test:

"* And-Gate-Obj - Outputs one result of a logical and of two input signals.

"• Not-Gate-Obj - Outputs a single negated input signal.

* Switch-Obj - Generates a logic one or logic zero.

• LED-Obj - Acts as a terminator object. Outputs its state to the REFINE interaction

window when its state changes.

Waggoner also constructed the cruise missile domain primitives used in the time-

driven sequential application executive test. A detailed description of these primitives is

contained in (24). These primitives combined to form two simple cruise missile applications:

* Fuel-Tank-Obj - This primitive simulates a cruise missile fuel tank. It models a pump

that pumps fuel at a predefined rate when the pump motor is set to on.

50

"* Throttle-Obj - This models an engine throttle. It contains a throttle setting attribute,

Max-Flow-Rate which is designed to show what percent of the greatest possible fuel

flow the engine should get.

"* Jet-Engine-Obj - Based on whether or not the start signal is asserted, the engine's

mode is off, starting, or running. This primitive consumes fuel and outputs thrust.

"* Start-Switch-Obj - The Start-Switch-Obj supplies a signal to cruise missile primitives.

In the applications created here, this primitive supplied an input signal to the Jet-

Engine and Fuel-Tank primitives.

6.3 Testing Technique

As with the executive instantiation phase of this research, application executive test-

ing relied upon use of the Architect textual interface developed by Anderson and Randour

(2, 18). It was necessary to use the textual interface during executive testing because

modification of the AVSI to support the executive occurred concurrently during this re-

search. Relying on the textual interface forced the test results to remain focused on errors

introduced by the executive and not on possible errors introduced by the interface system.

The textual interface allowed each test application to be precisely defined prior to running

each test case, thus allowing complete control over the contents of the REFINE object base

during the test.

A text editor constructed the test case applications and the Architect Parse-File

utility converted the application definition, complete with its fully-defined application ex-

ecutive subsystem into objects in the REFINE object base. Then the Architect Execute-

Application function exercised the application executive in these three test cases in both

the time-driven sequential mode and the event-driven sequential mode:

"• Correct operation of the executive subsystem alone. This test looked at the execu-

tive's ability to correctly service start, stop, and transmit events.

"* Correct operation of the executive subsystem when controlling one subsystem. The

second test's purpose was to show that the executive could correctly service transmit,

51

receive, new-data, set-state, and update events and accept events from the subsystems

it controls.

e Correct operation of the executive subsystem when controlling two subsystems. This

test looked at correct service of all events and correct use of connection objects as

well as correct data flow throughout the application.

What does "correct operation" really mean? In Architect, the following criteria help

one determine whether or not the executive functioned properly:

"* The clock increments when the event manager has serviced all time t events and it

is not possible for any primitive to raise more time t events.

"* The event manager and connection manager schedule the correct number and type

of events in response to the current event.

"* The current event changes when the event manager and the other primitives have all

completed their contribution to servicing the current event.

A list of initial events constituting part of a completely defined application executive

definition were parsed in prior to running each test. The state of each subsystem was

observed before running the test. During execution, the event manager primitive serviced

each event and the application displayed messages concerning the application's progress in

the REFINE interaction window. As events completed service, the Event Manager appended

them to a list of old events. After execution, all events that made it into the event manager's

event list and were serviced were in this old event list in the order of service. Inspection

of the old event list and the state of each subsystem and primitive demonstrated that

not only were events serviced in the predicted order, but the test application components

raised the correct events in the proper order in response to the events on the event list in

the beginning of the simulation.

6.4 Specific Test Cases and Results

This section contains a description of each test case and a summary of the results of

each test, grouped according to the mode of the test application.

52

6.4.1 Event-Driven Sequential Test. Appendix B contains representative test

cases for the event-driven sequential test and a sample of the test results. Figure 10 shows

the simple application that tested the executive's ability to control model subsystems in

this mode of execution. Figure 11 depicts the two subsystem application that exercised

the executive's data flow control capability.

Figure 10. A Circuit Application With One Subsystem Tested the Event-Driven Sequen-
tial Application Executive Subsystem

.................... -..•;.......... &" w•]

....... ...

Figure 11. A Circuit Application With Two Subsystems Used to Test the Event-Driven
Sequential Application Executive Subsystem

The event-driven executive tests revealed that the application executive correctly

serviced all application and executive events. In the case of the multiple subsystem test,

the connection object changed state accurately in response to the consecutive service of

transmit and receive events. The one subsystem and two-subsystem tests correctly modeled

the delay through the circuit. In the one subsystem test, the LED changed to the on state

after a five second delay. In the two subsystem test, the LED object transitioned to tbh

off state after a delay of fifteen seconds after one of the input switches changes position

during model execution.

53

6.4.2 Time-Driven Sequential Test. Appendix B contains representative test

cases for the time-driven sequential test and a sample of the test results.

* a

I a

I------------------

sS....ts... lo

Figure 12. The Multiple Subsystem Cruise Missile Test Application

The cruise missile domain primitives used in the time-driven sequential tests were

considerably more complex than the logic circuits domain primitives in the event-driven

sequential domain tests. Figure 12 shows the two subsystem test configuration. The one

subsystem test consisted of the subsystem with an engine, tank, and throttle where the

engine start and fuel pump start inputs set to on (true). However, control of the primitives

was simpler in one respect: the primitives did not schedule events for themselves. Instead,

these tests focused on whether or not the correct time value was broadcast to each primitive

that required time. This broadcast had to take place before each of these primitives serviced

their pre-scheduled update events, as they had to use a comparison of the current time to

the previous time when setting their state attributes.

The tests showed that time was transmitted to and received by each primitive prior to

each primitive's update function. Also, the primitives changed state appropriately. During

each simulation, the engine primitive transitioned to the Running state and it generated

thrust. The executive primitives cooperated correctly as they incremented time, managed

communication, and serviced events throughout the application.

6.5 Performance Analysis

This research was not aimed at optimizing application executive performance and

Architect execution. However, a few words can be said about the impact of the application

54

executive on Architect performance. The effects of the application executive on Architect

execution performance are due to the need for executive primitives to be isolated from each

other in order to comply with the OCU model and the fact the executive calls Architect

system routines during its operation.

The separation between the event manager and the connection manager led to an

inefficient technique of handling transmit events. Each time an application primitive called

Set-Export, the primitive generated a transmit event which was later placed on the event-

list. The connection manager respond to each transmit event whether or not a connection

object existed for the export being set. This inefficient method is a by-product of the need

for the connection manager to keep the secrets of each connection object, and the need for

each primitive and subsystem to not contain knowledge about any primitive or subsystem

outside its locus of control, including primitives in the application executive subsystem.

The application executive makes many calls to the Architect system routines Set-

Export and Get-Import in order for it to operate. These system calls slow system perfor-

mance. For example, during the time-driven tests, it was assumed that when the event

manager was doing nothing but incrementing the clock and broadcasting time to the appli-

cation subsystems that the system would run fairly fast. Instead, the clock update message

appeared in the REFINE interaction window at a rate of one message per second. This was

due to the volume of events required to broadcast the time as well at the large number of

calls that the executive primitives needed to make to service these events.

6.6 Summary

Testing of the Architect event-driven sequential and time-driven sequential appli-

cation executives revealed their correct operation. Correct operation is defined by the

executive's proper response to events in the event manager's event list. The following

chapter, Chapter 7 views the test results presented here in the context of the sum of this

research.

55

7. Conclusions and Recommendations

7.1 Introduction

This chapter summarizes this research's goals and compares them to its accomplish-

ments based upon the results presented in Chapter 6. It discusses the effectiveness of the

domain analysis process, draws conclusions based on the results, and makes suggestions

for further research.

7.2 Research Accomplishments

Recall the purpose of this research:

The purpose of this research was to evaluate, specify, implement and analyze
an application executive subsystem model which allocates host machine and
subsystem resources during application execution.

This effort resulted in these accomplishments:

1. Augmented OCU Model - This research determined extra constructs needed for the

OCU model. Prior to this research the OCU model lacked elements needed to im-

plement a domain model containing the common elements identified above.

2. Constructed Informal Domain Model - This research's informal domain analysis re-

sulted in an informal domain model expressed in Rumbaugh object, dynamic, and

functional models.

3. Built Formal Domain Models - This research augmented the application executive

function of the previous version of the Architect system using instantiated applica-

tion executive primitives. Requirements for these application executive subsystems

included those identified in (2, 18) as well as those identified in a study of the OCU

model and its implementation in Architect.

4. Validated Executive Operation - This effort validated operation of the executive in the

event-driven sequential and time-driven sequential modes of operation. Event-driven

sequential applications were built using domain model primitives from the domain of

logic circuits. Time-driven sequential applications made from primitives in the cruise

missile domain.

56

7.3 Architect Executive Capabilities

This research augmented the application executive of the previous version of Archi-

tect to allow the executive to explicitly control data flow, manage flow of control, and to

model simulated time and delays during execution. This research created an alrplication

executive domain model that allows applications to execute both a time-driven and event-

driven manner. These changes permit the Architect to function over more domains than

the previous version. This research consisted of two phases, domain analysis and primi-

tive instantiation. The following sections discuss the effectiveness of the methods used to

accomplish each phase.

7.3.1 Application Executive Domain Analysis. This research created a flexible,

adaptable domain model of an application executive that can be used by Architect to

control application execution. The creation of the application executive resulted from a

domain analysis over the domain of supervisory programs. The domain analysis process

combined the functional analysis techniques of Tracz with the object-oriented analysis

techniques of Prieto-Diaz. Initially, the research resulted in an 'nformal model expressed

in Rumbaugh diagram notation and text. These diagrams and textual descriptions were

useful during domain model implementation, but they were not unambiguous enough to

take advantage of REFINE's predicate transformation capability by themselves. Therefore,

the informal models were transformed into formal REFINE object and function declarations

using a set of heuristics (See Chapter 5). Ideally, it should be possible to initially define a

domain model in mathematical terms, write this description in a text file, and parse it into

the REFINE object base. Functions written in REFINE could transform these mathematical

structures into OCU structures. The goal of creating a formal mathematical model prior

to implementing a formal model as a set of Architect-OCU primitives was put aside to

allow time to complete implementing the executive subsystems themselves.

The domain analysis process developed here correctly identified the iterative nature

of domain analysis. During the Abstract Objects phase of domain analysis, the relationships

expressed in the dynamic models changed as the primitives were developed. For example,

as the more was understood about the need for the Time-Driven Clock object to broadcast

57

the current time to subordinate primitives, its export area changed to include a New-Event

export. Development of the dynamic models took an inordinate amount of time. This was

due to the complexity of the event traces, as well as the need to map the activities in the

textual event traces into graphical representations. The resulting diagrams were useful,

but perhaps a different dynamic modeling technique (one that takes only one "step" but

still contains the same information) should be used during future domain analysis.

7.3.2 Application Executive Instantiation. Instantiating a particular application

executive was relatively straightforward. This is because the ways in which the primitives

could interact was determined during domain analysis. Instantiation became a process

where primitives were plugged together. As these primitives were plugged together, it was

discovered that one primitive, the connection manager, could be used as is in both the

time-driven and event-driven application executives. The clock manager required a slight

modification between the two execution modes, while the event manager required extensive

modification. This primitive's update function was changed extensively to convert it from

an event-driven sequential primitive to a time-driven sequential primitive.

7.4 Utility of OCU Structure

Many strengths of the application executive result from encapsulating it in an OCU

structure. The presence of a common procedural interface to application subsystems per-

mits the executive to interact with each subsystem in a similar way. This allows the

executive subsystem to remain independent of the implementation of each application

subsystem. This quality limits the amount of information that the executive is required

to process during its registration phase. The use of a common procedural interface also

allows the executive to drive any numbc- of subsystems. The structure of the OCU model

determined how the formal domain model components would be implemented. It drove the

executive into an implementation which relied on the use of OCU primitives. The OCU

structure simplified design trades between an executive that is implemented as a group of

subsystems or a group of primitives which are united being under the control of a single

executive in that it provided a starting point for the trades. Without this starting point,

58

if the executive was implemented as a series of functions written in REFINE, then this set

of functions could be written with no organization save a functional one. The method

of encapsulating the executive in a group of related primitives wil! enable future users

of Architect to understand the types of services provided by each application executive

primitive, and to extend those services incrementally. They will be able to substitute one

primitive implementation for another. They will be able to combine the primitives used

in the event-driven and time-driven test cases along with additional primitives to build

executives which execute applications in the concurrent modes.

7.5 Suggestions for Further Research

Further research in the area of application executive definition should concentrate on

the following areas:

1. Visualize application executive - Section 7.3.2 described the straightforward nature

of connecting application executive primitives to form an instantiated executive sub-

system. Future research should include definition of icons for the executive primitives

to make it possible to use AVSI to instantiate executive subsystems.

2. Refine application executive - Architect is really only as powerful as the types of

applications it can create and execute. While it can be used to compose an application

from many different domains, it can only execute three types of applications, non-

event-driven sequential, event-driven sequential and time-driven sequential. It cannot

control concurrent applications. The informal domain model presents details on how

a concurrent executive might work. The informal domain model artifacts should

be transformed into primitives and instantiated using the methods outlined in this

research. This concurrent capability may lead to a real-time application executive.

3. Define more application domains - During the validation of the application execu-

tive, the characteristics that made certain primitive event-driven, and certain primi-

tives time-driven became clearer. Event-driven primitives schedule requests for self-

activation with the executive, as well as requests for executive services. Time-driven

primitives, on the other hand, do not schedule update events for themselves but may

59

request all other executive services by scheduling executive events with the executive.

Armed with this information, future researchers should create more application do-

mains to further test these notions for what it means for a primitive to be time-driven

versus what it means for a primitive to be event-driven.

4. Test and build more applications - Testing only shows the presence of errors. Al-

though Waggoner tested the application executive extensively using a number of

applications constructed from the event-driven circuit and cruise missile domains

(24), more applications should be created to further test executive operation.

5. Investigate visualizing execution - The executive allows the application specialist to

view the events that the executive services and the time the executive services them.

This permits a more detailed understanding of the temporal execution state of the

application. The presence of a global time primitive allows future Architect develop-

ers to extend visualization of the application to include visualization of the passage of

time. Future research should included an analysis of the utility of visualizing domain

model execution.

7.6 Final Comments

This research successfully developed an executable domain model of an application

executive for Architect. The informal domain model and formalization technique devel-

oped and demonstrated during this research provides a means for increasing Architect

capabilities through continued improvements to the Architect application executive.

60

Appendix A. Application Executive Domain Model

A.1 Introduction

This appendix documents the development of an application executive domain model.

It follows the domain modeling process defined in Chapter 3. The first six sections discuss

the informal phases of domain analysis. The last section shows the results of formalization

of the domain model using the informal artifacts derived in the early sections. It should

be note:; that during domain analysis, many of the steps in the domain analysis process

were re-visited throughout the research. The informal and formal artifacts depicted here

reflect the final results of domain analysis over the domain of application executives.

A.2 Name Domain

This research was undertaken by the AFIT Knowledge-Based Software Engineering

(KBSE) group to improve its application composition system called Architect. One of the

improvements that was called for was extending Architect's application execution capabil-

ities (15:8). As a result, the domain of interest for this domain analysis process became

the domain of software system executives.

A.3 Scope Domain

The domain of system executives includes programs that control the execution of

other programs. Typically, operating systems are process-oriented and a process is viewed

as a program in execution (1). Architect's application executive is similar to general oper-

ating system kernels in that it controls the execution of its subordinate entities. However,

the application executive is not process-oriented. It fits into Architect's OCU architecture

and manages the execution of subsystems instead of processes. The application executive

controls subsystem communication by controlling links between subsystem import and

export areas. Architect's application executive runs on top of a host operating system,

so it need not be concerned with memory management or file management per se, but

it may make calls to the host operating system to store and retrieve information during

execution. Besides the architectural restrictions on the application executive imposed by

61

the Architect implementation of the OCU model, the research goals outlined in Chapter 1

impose other constraints. For example, the Architect application executive does not meet

hard real-time constraints. This application executive is not designed to run on a parallel

machine. Although the enhancement of Architect's user interface is beyond the scope of

this research, the application executive model includes a means for the user to interact

with the composed application and understand its behavior as it executes. Chapter 1 also

specifies that Architect's application executive must:

"* Control the use of all host system interfaces including the CPU and 1/0 resources

"* Permit concurrent subsystem execution

"* Maintain a system clock

SManage subsystem execution time

* Allow sharing of data between subsystems

A complete domain model of an Architect application executive includes objects and

operations to perform the functions described above.

A.4 Obtain Domain Knowledge

Given the limited scope of the domain as outlined in section A.3, there are key op-

erating systems and OCU modeling concepts the Architect application executive employs.

These concepts include OCU architectural considerations, the services provided by the

J-MASS executive, and constraints implied by a need to potentially control concurrent

execution. These ideas allow a domain analyst to identify the objects and operations that

make up an application executive domain model. This section describes these concepts and

defines a set of executive services that the application executive domain model describes.

A.4.1 The OCU Architecture. The OCU model defines the framework for the

Architect application executive. Chapter 2 states an application that is modeled in the

OCU paradigm consists primarily of subsystems. A subsystem operates upon a group of

objects and these objects change state based upon the data presented to the subsystem

import area and the subsystem procedure called by the application executive (12:18-19).

62

In order for an application executive to comply with the OCU model, it uses the subsystem

procedural interface to cause subordinate subsystems to execute. The application execu-

tive model itself conforms to the OCU model definition. Just as the subsystem is "the locus

of a mission and the objects are services to carry out the mission" (12:18) the application

executive serves as the locus of the application's mission. The OCU model provides for

an interface with host system resources in the form of an I/O driver, a control surrogate,

and a monitor surrogate (12:23). These constructs help the executive communicate with

resources external to the application. The monitor surrogate communicates with the ap-

plication and the control surrogate communicates with the host hardware. The application

executive developed during this research does not use the structures listed above (monitors

and surrogates) to implement these services. It does incorporate information hiding and

resource protection in the application executive structures that take the place of monitors

and surrogates. All of these OCU structures have an impact on the kind of objects in the

application executive domain model.

D'Ipollito hinted at the services an OCU-compliant software application's executive

must have (6:260). His aircraft application had a flight executive as its application ex-

ecutive, and an engine executive as the aircraft's engine subsystem executive. His flight

executive provided these services to the application:

"* Obtained outside state information for the aircraft

"* Placed aircraft state information on external objects

"* Monitored internal aircraft data control

"* Managed the interface to the subordinate engine subsystem executive

A.4.2 Concurrency and Temporal Programming. In some application domains, it

is possible that some subsystems may execute concurrently. Because of this, the application

executive domain model contains structures which control the way in which subsystems

execute in a concurrent mode. The application executive prevents causality errors from

occurring during concurrent execution by protecting changes to the application clock when

the application is running concurrently. Concurrently executing subsystems complicate

63

the executive's ability to model time during each application's execution. If processing

time is an attribute of a subsystem and the global clock is updated with the subsystem

processing time after a subsystem executes, the executive must figure out how to update the

global clock after concurrent process execution (29:141). Clearly, the application executive

domain model should provide a means to consistently update the application clock. Also,

in order to model time in the application, each application component requires access to the

current time. The application executive domain model must also function in applications

where time is not a factor.

A.4.3 Domain Specific Application Executive Features. Ideally, this research

should define a general application executive which can control any application. In a

general application executive, the line between application control and simulation control

would always be well-defined. However, it may not be possible to create a general appli-

cation executive. The application executive must be able to incorporate domain-specific

application control information from the application composed by the application spe-

cialist. For example, the application executive may use events to signal when I/O must

occur or a subsystem must fire. Potentially, the application executive would need to query

the composed application to see what application-specific events must occur and how the

executive should handle them. Also, the application specialist may want to specify the

particular output devices used by the application. This application-specific information

must be provided before execution begins. The application executive may be created as

a result of examining the composed application and deriving attributes based on the ap-

plication's attributes; or, the application specialist may answer queries where he or she

specifies application information. The application specialist may do both.

A.4.4 Domain Model Services. Synthesis of the information obtained during

domain analysis revealed that the Architect Application executive must perform these

services:

64

1. Event Handling - The executive services events raised by the application during

execution. The executive orders events and may generate events for the application

executive and model components.

2. Registration - The executive gets application-specific requests for 1/O devices and

executive services. This involves building executive data structures with information

about application subsystems to enable the executive to keep track of each subsys-

tem's execution state. For example, the executive subsystem collects the connections

in the composed model and controls them throughout application execution.

3. Activation - The executive activates particular subsystems when it's time for them

to execute. The order of activation is determined by the schedule and by the current

execution state of the component that must execute. Activation is the result of an

event and may cause other events to be generated.

4. Communication - The executive supervises internal application data transfer. It

manages connections between components and provides inputs for processes when it

is time for them to execute.

5. 1/0 Handling - The executive supervises application calls for external I/O services.

It controls external device interaction with the application. It manages application

access to device drivers and buffers for those devices.

6. Scheduling - The executive makes an execution schedule for the application. It orders

events and determines how to serialize concurrent events.

A.4.5 Executive Domain Model Services vs. J-MASS Executive Services. Chap-

ter 2 contained a section that listed the services provided by the Simulation Run-Time

Agent (SRA) in J-MASS. Architect provides similar services. Table 2 lists the services

and the application executive domain model primitives which provide them. This table is

included to demonstrate that the architect application executive is conceptually similar to

the J-MASS SRA.

The application executive domain model differs from the J-MASS SRA in two ways.

First, J-MASS contains a special component that keeps track of the location of players

65

J-MASS Artifact Domain Model Primitive Service
Simulation Controller Event Manager Event-Handling
Scenario Manager Registrar Registration
Synchronizer Event Manager Scheduling
Spatial System Manager Component
Interconnect Connection Communication
Locus of Control Component
Activator Object Control Block Control Flow
Journalizer Device I/O Handling

Table 2. J-MASS Services Compared to Application Executive Domain Model Services

in the model called a Spatial System Manager. If an application specialist wants to im-

plement a model in Architect where the location of the components mattered, he would

create his own subsystem to keep track of this information. Secondly, J-MASS uses a

special structure called a Journalizer to obtain simulation data. The Architect application

executive domain model requires the application specialist to insert a device in his appli-

cation during composition if he wants to send data about the execution to devices external

to the Architect run-time environment.

A.5 Choose Model Representation

There are many benefits to formal system specification (10:19). Formal specification

eliminates requirements ambiguity and forces system designers to focus on what a system

should do prior to implementing the system. The goal of this domain analysis process

was to produce a domain model of the domain of application executives that described

the entities in an application executive and the ways that these entities may change dur-

ing execution. The choice of a domain model representation technique depends on the

characteristics of the scoped domain of application executive for Architect, REFINE imple-

mentation constraints, and available formal specification techniques.

A.5.1 Formal Specification Techniques. Potter, Sinclair, and Till break down the

many possible techniques of formal specification into three basic families (4:273-274). State

based specification languages such as Z, REFINE and the Vienna Development Method

66

(VDM) use set theory and predicates to construct system models. Process algebras like

Communicating Sequential Processes (CSP) model a system as a collection of processes

which communicate. According to Potter, Sinclair and Till, CSP is useful when modeling

systems where interprocess communication is emphasized (4:273). Models constructed

from algebraic techniques consist of a series of equations which express model components

and behavior. Structured analysis methods rely on a graphical representation to express

system components and behavior.

A.5.2 Scoped Domain Characteristics. Section A.3 outlined the specific con-

straints placed upon Architect's application executive by Architect's implementation and

research goals. Section A.4 discussed the key characteristics of the scoped domain and

stated that these would be the main clues as to what objects would be part of an applica-

tion executive model. The characteristics of the scoped domain also influence the domain

modeling language in this domain analysis process. When searching for a domain modeling

language, one must decide which features of the domain of interest should be emphasized.

Prieto-Diaz refers to this as defining the goals of domain analysis (16:67). In the case

of the domain of Architect application executives, the domain model representation will

concentrate on keeping track of the execution state of the application. This is because the

Architect implementation of the OCU model structures Architect applications into sets of

subsystems that maintain the state of their subordinate primitive objects. The application

executive could be structured into a group of related subsystems as in (3). However, that

type of encapsulation of services into subsystems supposes that there are primitive objects

defined which provide these services that can be grouped into subsystems. A state based

specification language with set-theoretic types, like REFINE or Z would be suitable as an

application executive domain modeling language.

A.5.3 REFINE Implementation Constraints. The application executive domain

model was formalized and converted into executable code and incorporated into Archi-

tect. Thus, a key reason for choosing a particular domain modeling technique was the

ease of its transformation into REFINE, Architect's implementation language. As stated in

Section A.5.2, REFINE is a specification language itself. REFINE allows a programmer to

67

specify entities in the domain as objects with attributes. REFINE contains first order pred-

icate calculus constructs. These constructs allow a programmer to specify pre-conditions

and post-conditions which can be satisfied automatically using a REFINE transform con-

struct. REFINE also contains a means to organize objects into tree structures and traverse

them easily. Clearly, an appropriate domain model representation should be simple to

transform into REFINE and incorporate into Architect.

A.5.4 Domain Model Representation. In this domain analysis process, the do-

main model representation includes the choice of a formal specification language and a

description of the artifacts which will be defined using this formal specification language.

The domain analyst uses the specification language and the artifacts to capture the objects

and operations in the domain model.

A.5.4.1 Specification Language Choice. In Architect, the application exec-

utive must manage the execution of subsystems. These subsystems have states and the

application executive must control the way these states change. Therefore, a state based

specification language would be the most suitable kind of domain model representation

language. REFINE is the most suitable specification language available for this domain

analysis process for three reasons. First, REFINE is already Architect's implementation

language. Using REFINE eliminates the translation step between the specified and imple-

mented domain model. Second, REFINE can be compiled. While the compilation process

does not ensure the model's correctness, it serves as an automated type consistency check

for the domain model. Finally, REFINE contains an automated tool called DIALECT for

defining and parsing domain specific languages. The domain model can be defined in terms

of this domain specific language. Architect utilities can parse this defined model into the

REFINE technology base thereby creating instantiated objects that can be manipulated by

Architect system software.

A.5.4.2 Domain Artifacts. The application executive domain model was

built in stages. Model development began by listing Architect application executive ser-

vices. Rumbaugh object models described the objects and operations which carry out

68

these services. When necessary, Rumbaugh dynamic and functional models provided addi-

tional information as to how these service's objects change state or process information. (A

complete description of the Rumbaugh object-oriented analysis technique may be found in

(11).) The Rumbaugh object models became encoded in REFINE object declarations. The

operations listed on the object model were encoded as REFINE functions. A domain-specific

language was defined which described these REFINE objects and attributes.

A.6 Identify Objects

Before identifying objects, it was necessary to define what the addition of an appli-

cation executive adds to the Architect system. The application executive controls the flow

of data and the flow of control through the application. It relies on the logic contained

in each model component to manage data and control flow below the component level.

An application consists of an application executive together with a model composed from

a particular domain. The application specialist must specify how the application must

behave and what subsets of application state will be recorded as application output. One

must consider what objects help ensure correct component state changes when identifying

objects which make up an application executive domain model. The application specialist

must choose the correct model components to answer the following questions:

"* The level and method of subsystem interaction - do two closely related subsystems,

say a car and a trailer, need to communicate with another component in order to

drive down a road?

"* The desired application output technique - how will the application specialist view

application behavior? Will he or she output data to a file, a common window, or the

Refine interaction window?

"* The required method of application input - how will the application specialist give

external input to the application?

The application executive provides services for four different types of applications.

These types of applications differ in the way in which they execute. These executive modes

are:

69

* Event-driven sequential

* Event-driven concurrent

* Time-driven sequential

a Time-driven concurrent

An event-driven model executes as the result of servicing events which are asyn-

chronously raised by the model components and the executive. A time-driven model is a

model in which each component reacts to a change in the clock. A sequential model is a

model where only one application component can execute at a time t. A concurrent model

permits multiple subsystem execution at any one time. The application executive will

provide its services in different modes by utilizing d(fferent executive model components

to handle these different modes of operation.

A domain model of an Architect application executive consists of the following objects

and attributes. Note that each object's attributes are listed below it.

Activate Event - A kind of internal event which notifies the object control block (OCB)
it may change its execution state to either RUNNING or BLOCKED. The event
manager determines which state the activate event will change the OCB to based on
the current OCB state. RUNNING signifies that a component is to begin execution.
BLOCKED signifies that the component is waiting for valid input data, or an external
device to be able to take its output.

* OCB-Name: Symbol

Application Event - This possibly abstract class describes a kind of internal event raised
by an application that must be serviced in some application-specific or architecture-
specific way. For example, an airplane simulator may raise this event when the
aircraft crashes. An OCU-type model component may raise an update or set-state
event. The mapping between this event and its service routine is established by the
component that raised it.

Application Executive - The top-level, abstract object that is composed of these other
objects.

• Mode: Mode-Types = (Event-Driven-Sequential, Event-Driven-Concurrent,
Time-Driven-Sequential, Time-Driven-Concurrent,
Non-Event-Driven-Sequential)

Clock - This abstract class maintains application time. Advanced by the event manager
to time t + r following the service of all possible events at time t.

70

* Time : Integer

Component - An application model component. The component's execution results from
the service of an application event. A component's execution state is maintained by

an object control block.

e Name : Symbol

Connection - A link between components (or between a component and a device) which
buffers the data which flows between them. The connection object raises a receive
event when it gets new data. This notifies its sink object that it had new data
which must be considered by the sink object as it executes. A connection cannot
exist without a source object and a sink object. Export-Obj and Import-Obj refer to
OCU-specific sources and sinks for data in an Architect application.

9 Source : Export-Obj

* Sink: Import-Obj

e Status: ConnectionStatusType z= (CONSUMED, NOT-CONSUMED)

* Old-Data: Any-Type

* New-Data: Any-Type

Device - This object class represents an external device. This object's methods are drivers

for an external device. Note that specializations of this object class may include file,

X-Window, or common window objects. Thus object writes data to the applica-
tion and reads data from the application. Conceptually, this object is similar to a
component. Its operation state is maintained by a device control block object.

* Name : Symbol

e Info: Buffer

Device Control Block - The device control block (DCB) object controls a external de-
vice and acts as the interface between the application and the external device. This

object responds to transmit events raised by its associated device when device wishes
to write data to its connections. The DCB responds to receive events raised by the

associated device's input connections.

"* Device-Name : Symbol

"* Input-Stat : ConnectionStatus_ Type

"* Output-Stat : Connectio,,_Status- Type

"* Device-State: DeviceStateTypes = (BLOCKED, IDLE, INPUT-PRESENT,

OUTPUT-PRESENT)

Done Event - A type of executive event which signifies that a component will not raise

any more events at time t, and it is safe to increment the executive clock.

Ed-Clock - This concrete class maintains application time in event-driven applications.
It does not raise transmit events to provide time service to other components in the

application.

71

Ed-Seq Event Manager - This concrete class services events raised during event-driveil
sequential execution. It differs from the time-driven event-manager in that it accepts
all types of events from application components.

Event - This object class describes when application state has changed. This event re-
quires servicing by either changing the execution state of an object control block,
internal transfer of data, external transfer of data, beginning execution, or ending
execution. Object-Name and Subsystem-Names are used by Architect to determine
which

"* Object-Name : Symbol

"* Subsystem-Names : seq(Symbol)

"* Ev-Time Integer

"* Priority: Integer

Event Manager - This ats~ract class services events raised during application execution
in the order dictated by the schedule. It also raises the executive events necessary
to service application events and to ask for executive functions. The Old-Event-List
contains a list of events, as serviced by the event manager, in their order of service.

"* Current-Event : First(Schedule)

"* Event-List : Schedule

"• Old-Event-List : seq(Event)

Executive Event - This abstract class describes a kind of event which requests an exec-
utive service such as moving data or control through an application.

New-Data Event - This event, a specialization of the executive event notifies an appli-
cation component that it should check its input area for new data.

Object Control Block - This object keeps the execution state for the component. When
a component's execution state is RUNNING, it may generate events, accept input,
and produce output. When a component's execution state is BLOCKED, it is waiting
on valid input or it is waiting to write its output to its connection which is itself
waiting on an external device. An INACTIVE component is done executing for good,
or it has not been cued to execute yet by an activation event. The event manager uses
the data contained in the OCB to determine how it should handle executive events.
For example, the event handler behaves differently during an activation event when
the Input-Valid field is false than when it's true.

"* Component-Name : Symbol

"* Input-Status : Boolean

"* Output-Status : ConnectionStatus_ Type

"* Execution-State : Execution-Types = (BLOCKED, RUNNING)

Receive Event - A kind of internal event which tells an object control block that new
input its component needs has arrived in its input connection. This event is raised by
a connection. The Receive-Import-Name attribute denotes the data's target Import-
Obj.

72

e Receive-Import-Name: Symbol

Registrar - This object contains a mapping between components in the application and
the services they have requested. It uses this mapping to create objects necessary to
perform those executive services for subordinate subsystems when necessary.

* Where-Services : set(components, exec-obj)

Remove Event - This object is a subclass of executive event. It notifies the event man-
ager it must remove events of a particular type which pertain to a specific component
from the schedule. If the target event has any special attributes associated with it,
then Remove- Val contains those.

"* Remove- Val: Name- Value-Obj

"• Event-Type : Symbol

Schedule - An abstract object consisting of the total ordering of events in the application.
The schedule is created and modified by the event handler.

Start-Event - A kind of executive event which signifies that the event manager should
begin operation. This event also sets the clock to the start time indicated in the
event.

* Start-Time : Integer

Stop-Event - A kind of executive event which signifies that the event manager must halt
execution at the time indicated in the stop time field.

* Stop-Time : Integer

Td-Clock - This concrete class maintains application time in event-driven applications. It
raises transmit events to provide time service to other components in the application.

Td-Seq Event Manager - This concrete class services events raised during time-driven
sequential execution. It differs from the event-driven event-manager in that it accepts
only executive events from application components.

Transmit-Event - A kind of executive event which signifies that an application compo-
nent needs to send information to a connection. The information in the connection
object allows the connection to get the information from its source component. How-
ever, the connection manager needs the information contained in the transmit event
to find the proper connection.

"* Transmit-Export-Name : Symbol

"* Transmit-Subsystem-Name : Symbol

"* Transmit-Primitive-Name : Symbol

Figure 13 represents the objects identified in this section. This graphical represen-

tation was transformed into REFINE object declarations during the Abstract Objects steps

of this domain analysis which are documented in Section A.8.

73

0

Gook Ewd ede" OWAMONWONk Omodbn

Ihm OAWtZVd wedw DWA04km OWN
swf4w hw"mw a*

OAPA41" GwmPdwo&"
Dwk64 WOO

hWSWA*dby Dmin

Nw
awbi

CwWwwd wmmwmwn

mags"mmw E"q Ewd II Nm
*Nlbdby

Nhwhy

Eva"
Nw4ft

Td4

F
aw

Figure 13. Application Executive Object Model

74

A. 7 Identify Operations

This section names the operations associated with each object class. Operations are

object methods which can be performed on each object and change that object's state.

These operations result from using event scenarios to describe object interaction. These

scenarios are represented graphically as dynamic and functional models which appear in

this section.

A. 7.1 Scenarios. These scenarios describe the operation of the application execu-

tive domain model. They were written to validate the structure of the application executive

object mocdel and to discover the dynamic relationships between the objects in the domain

model. They do not literally describe the operation of the formalized model components in

Architect. They contain notional descriptions of how a concurrent application's executive

might work, if the concurrent domain model primitives were formalized and included into

Architect. These scenarios were used to create the functions implemented by the formal

domain model primitives, and they document design decisions made while getting ready

to formalize the domain model.

These scenarios describe the two application executive phases: registration and exe-

cution. During the registration phase, the application executive determines which compo-

nents need executive services during model execution. The executive creates objects which

provide these services for each component that requests them. Then, the application exec-

utive enters the execution phase when the event manager services various types of events

beginning with the start event. In event-driven mode, the event manager ordcrs the events

it services based on time and by priority for those events which are scheduled for the same

time. Why have priority events? Since a component may want to update itself based on

the state of a subordinate component at that time, the subordinate component application

events must be serviced before the higher level events that are tagged with the same time.

Also, an application specialist may want to use priority events to handle error or other spe-

cial conditions which could arise during execution. In time-driven mode, each component

is notified of a clock change and it reacts to the correct time value by either executing or

not executing at that time. The event manager changes the clock periodically. The appli-

75

cation specialist specifies when the clock changes by scheduling regular clcck application

events. For example, the application specialist may schedule a start event for time zero.

Then, he may schedule clock application events every second thereafter. After each clock

change, the application specialist schedules application events for each component, which

contain the current time. In sequential mode, these events are serviced in sequence. In

concurrent mode, these events are serviced concurrently. Note that in time-driven mode,

the components do not schedule application events for themselves. Thus, the application

operates in a synchronous fashion. In both modes, the executive's execution phase con-

cludes when the event manager services the stop event. (Note that the stop event can be

raised by the user as well as by the application.)

The four different modes of executive operation affect the ways in which the different

executive services behave with respect to each other. The registration and execution

scenarios listed below represent how the executive domain object model behaves in all

modes. Explanations of mode dependent behavior changes in the event manager, the

components, and the event service routines are included in these scenarios. The scenarios

listed below which apply to the execution phase are broken into several cases for simplicity.

These additional scenarios describe what the executive event manger does when it services

each type of executive event in each of the four modes.

A.7.1.1 Registration Scenario in All Modes. The following events occur

during the registration phase:

1. User starts registrar.

2. Registrar queries user for desired mode of operation.

3. Registrar queries components for executive services required by the components.

4. Components return required services.

5. Registrar creates objects to provide those services, considering the mode the user
selected.

6. Registrar loads event manager with application events that will activate components

at start time.

7. Event manager shows the user these events.

8. User may change this by adding/deleting events from the schedule.

76

9. User starts event manager by specifying a start time and externally raising a start

event.

10. Event manager services the start event by setting the global clock to the start time.

11. Event manager deletes the start event, the highest priority event at the start time,
from the schedule.

12. Event manager services all events with a time stamp equal to the current time on the
clock in priority order (note that now the application executive enters the execution
phase).

A.7.1.2 Execution Scenario in Event-Driven Sequential and Event-Driven Con-

current Modes. The following steps describe the application execution phase in all

cvent-driven modes. During application execution, the event manager is operating and is

servicing all events that components and devices raise in the application. Components and

devices are only activated at a particular time if they or the application specialist schedule

application events for them. Activation occurs when the component's object control block

is told to change its state to either running or blocked, depending on the condition of the

component's inputs. The feed-forward nature of data transfer between components drives

component activation when components get input from a connection (see Sections A.7.1.10

and A.7.1.8 on transmit and receive event services). The scenario assumes there are model

components which are concurrently executing and generating events at the component and

subcomponent levels. Events in the schedule (event list) are ordered by time and then by

priority. The component's place in the component/subcomponent hierarchy normally de-

termines the priority of its events, although the application specialist may designate high

priority components whose events must be serviced first. The executive events stop and

start always have the highest priority.

1. Event manager services all events at the absolute simulation time t in order of priority.

2. During execution, the components and their subordinate components and subcom-
ponents raise events. These events are scheduled for relative times r0 ... ri, (where j

is the total number of events raised) and passed up to the event manager.

3. Event manager stamps each event with the correct absolute global time t + ri (where
0 < i < j) and inserts them in the schedule.

4. In concurrent mode, all top-level components signal that they will send no more

events during simulation time t by sending a done event up to its parent component
stamped with a relative time of zero.

77

5. In concurrent mode, event manager services the done events by changing the appli-
cable component's execution state to INACTIVE.

6. In concurrent mode, when all top-level components are INACTIVE at time t, and

there are no more time t events on the schedule, it is now safe to increment the clock.
The event manager sets the clock to the time indicated by the event at the top of
the schedule. This event is the next one that is to occur in absolute time.

7. In sequential mode, the components do not need to check in when they are done

producing events at time t.

8. In sequential mode, the event manager looks on the event list to see if all time t
events have been serviced. If they have been serviced, then it is safe to increment
the clock in the same manner as in the concurrent mode.

9. Event manager services the events in priority order with a time equal to the time
shown on the clock.

10. Event manager continues servicing events, counting done events, and incrementing
the clock in this manner until it receives a stop event.

The scenario described above highlights the differences between the event-driven

concurrent mode and the event-driven sequential mode. In both modes, components begin

executing when an application event which pertains to the component is serviced and

their associated object control blocks have the correct execution state. Object control

blocks that are in the RUNNING state at the same time indicate that their components

are executing concurrently. Concurrency is simulated by not allowing simulation time to

advance until all time t events in the application have been serviced. In concurrent mode,

the event manager knows when all time t events have been serviced when it receives the

proper number of time t done events (thus there are no more RUNNING components)

and there are no more f events on the schedule. This is because a component cannot raise

events unless it is RUNNING. If a component has nothing to do at that time it raises

a done event. This scheme implies that each component is able to determine when it is

done generating events "for'now." Sequential operation only requires that all time t events

raised by each component are serviced before the event manager can increment the clock.

Counting done events is not necessary because there is only one thread of control.

The scenario mentioned priority and that events will be ordered by both time and

priority. The event manager needs to order events by priority because low level components

may need to complete their time t state change prior to upper level components if those

upper level components depend on the lower level components state at time t to compute

78

their state at time t. Priority-ordered events allow the application specialist to specify

failure events raised by a low-level subcomponent that must be handled immediately at

the highest level in the application. Also, the other executive services will raise events that

will be serviced by the event manager. These executive events need to be serviced before

application events scheduled for the same time.

A. 7.1.3 Execution Scenario in Time-Driven Sequential and Time-Driven Con-

current Modes. In the time-driven mode, the application executive must give each

component a chance to respond to changes in the clock time. In other words, the clock

makes things happen in the application, and "sequential" and "concurrent" describe two

different ways for the clock to make things happen. Here is how the application executes

in a time-driven concurrent fashion:

1. In concurrent mode, the event manager notifies each component that the clock has

changed with an application event containing the current time.

2. Each component determines whether or not it must execute at this clock time.

3. If it must execute, it sends an activate event with a delay of zero to the event manager
and the event manager changes that component's execution state appropriately.

4. When the component is done executing, it sends a done event to the event manager
to change its execution state back to INACTIVE.

5. When all components have signalled that they have had a chance to respond to the
clock, the event manager changes the clock to the next increment.

If the application is executing in a sequential manner, the application executive must

place component execution in some order. The event manager does this by activating

components in a fixed order every time the clock changes. This way, each component does

not have to respond back to the event manager with a done indication. The event manager

reschedules application events for valid future times following service of each application

event. The event manager does not reschedule executive events. A valid clock time is a

time where the event manager can place an event such that no two application components

are operating at the same time. Round-robin component activation occurs until the event

manager reaches a stop time or stop condition.

A.7.1.4 Activate Event Service. The application specialist schedules initial

application events for when each model component should begin execution. Applier; 'on

79

event service by the event manager begins by scheduling activation events to allow the

executive to determine if the component has an appropriate execution state to begin run-

ning. Depending on the state of the component's object control block, activation events

may result in blocking a component's execution by blocking its associated object control

block because the component's inputs are not ready. Note that these events are only used

in concurrent mode. Here is how the event manager services activation events:

1. Check object control block input-valid field to see if it is valid.

2. If it is not then change object control block state to BLOCKED.

3. Else, change object control block state to RUNNING.

4. The event manager re-schedules any application events that were saved off because
the component was RUNNING or had invalid input when it was originally scheduled
to go.

A.7.1.5 Application Event Service. During execution, a component or

subcomponent may raise application events. These events must be serviced by application

component methods in the application. They may use application-wide state information

to determine how the routines should be serviced. Here is how the event manager services

these events in concurrent mode:

1. Event manager uses information in the application event to determine which compo-
nent raised the event.

2. Event manager attempts to change the execution state of the target component by
scheduling an activation event for it.

3. The event manager moves the application event aside while it services the activation
event.

4. With the activation event now serviced, the event manager continues to service the
original application event.

5. If the activation event indicated that the component was RUNNING before event
service, the event manager puts the application event aside until it can be serviced.

6. If the activation state is BLOCKED as a result of the activation event, the event
manager saves the application event for rescheduling when its input becomes valid.

7. If it is RUNNING as a result of the activation event, the event manager sends the
event to the target component for the component to finish servicing.

8. Now that the component is RUNNING, it may schedule transmit events with results
of this execution for some relative times in the future (when the component produces
output).

80

9. It may also schedule application events (such as an update event in the OCU's case)
for some time in the future, as a result of component execution, as needed.

10. In concurrent mode, schedule a done event for a relative time of zero, when the
component is done raising events for that time.

11. Event manager services next event.

In sequential mode, service of this event is very simple. The event manager passes

control to the component until the component completes execution. There is no need to

keep track of the component's execution state.

A. 7.1.6 Done Event Service. The event manager uses done events to estab-

lish a safe condition to change the clock by signalling when a component is done executing.

Here is how the event manager services a done event, an event that is only used in con-

current mode:

1. Change the component's OCB execution state to INACTIVE.

2. Reschedule previously waiting application events for the component.

A.7.1.7 New-Data Event Service. A new-data event is serviced in the

same manner as any application event. That is, the event manager sends the new-data

event to the application component that has received new data via a connection. The

application component controller uses its logic to determine which subcomponent actually

received the new information. The component schedules an application event for the correct

subcomponent for some time in the future.

A. 7.1.8 Receive Event Service. In concurrent mode, when an object control

block cannot enter the RUNNING state due to having invalid input data, it is BLOCKED

until an input connection schedules a receive event for the object control block. When

the input data becomes valid, the application events which appeared when the OCB was

blocked are rescheduled and get another chance to execute. Here is how the event manager

services a receive event in concurrent mode:

1. Set input data to valid for this object control block.

2. If the object control block was RUNNING, set the receive event aside until the
component is INACTIVE.

81

3. Else, the connection writes the data from connection to component.

4. Mark the connection CONSUMED.

5. If the object control block was BLOCKED, then reschedule previously blocked ap-
plication event for this object control block at a relative time of zero.

6. Service next event.

In sequential mode, receive event service is very simple. The connection manager

finds the correct connection object using data in the receive event. Then, the connection

manager raises a new-data event to notify a subsystem that it is to receive new input.

A.7.1.9 Remove Event Service. The state of the application may change

to the point where some events in the schedule are no longer needed or should not be in

the schedule. The remove event notifies the event manager that events should be deleted

from the schedule. Here is how the event manager services the remove event in all modes:

1. Event manager uses information in the remove event to delete events from the sched-
ule which are described by the remove event.

2. Event manager services next event.

A.7.1.10 Transmit Event Service. Components produce output which they

place in connections that connect components to components, components to devices, or

devices to components. The connection object specifies that each component has one

output connection per data item that must go downstream. When a component produces

output, it schedules a transmit event which contains the output. In the event an upstream

component is much faster than a downstream component and that downstream component

does not consume the data fast enough, the event manager will ensure the data is not lost.

Here is what the event manager does to service a transmit event in all modes.

1. Change object control block output to valid.

2. Check connection status.

3. In concurrent mode, if the connection contains data that is NOT-CONSUMED, the
event manager will put this transmit event aside until it is consumed and exit this
service routine.

4. Else, write output from the component to the connection.

5. Mark the connection NOT-CONSUMED

82

6. Connection schedules ,eceive events for the component at the other end of the con-
nection for a relative time of zero.

7. Event manager services the next event in the manner described in the previous sec-
tions.

Figures 14 - 21 depict the domain model's dynamic behavior. These diagrams are

based upon the textual descriptions listed above.

-1
fA

Figure 14. Clock Object Dynamic Model

83

LU

S.•_ =

LLf

,,CIO

•0 on

CM€
Figure~ 1.omoetOcc yai oe

>8

II

S�T

CS

*iI
00

Figure 16. Connection Object Dynamic Model

c85

0

Figure 17. Event Object Dynamic Model

86

L+"

LE
LEi

Figure 18. Event Manager Object Dynamic Model

87

C, 2

o *
UJ

EJ

e-e

w a. aIi

S,

b0
00

!0

0

Figure 19. Device Object Dynamic Model

88

IAJ

3. 32

Figure 20. Device Control Block Dynamic Object Model

89

EE

*0

CO)

01

SO.

al
Co

0420

MCL

09

A. 7.2 Operation Descriptions. This is a description of the operations associated

with each object in the application executive object model. Objects that have no unique

operations associated with them have been intentionally omitted.

Clock These operations are associated with the clock object.

"* SeLClock - This operation sets the clock to a specified time.

"* Read-Clock - This method reads the current time on the clock.

Component The operations associated with a model component are those designated by
the domain engineer during component development.

Connection These operations can be associated with the connection object.

"* Get-Info - Get data from its source component and place it in the connection
object.

"* PutInfo - Take data from connection and place it in its sink component.

"* Is-Fresh - Compare the old buffer values to the new buffer values to see if they
axe equal. This function returns a boolean value.

"* Set-Status - Set the connection status to CONSUMED or NOT-CONSUMED.

Device A device object carries out these operations.

e Get-Input - Get information from an external device.

e Write-Output - Give information to an external device.

Device Control Block A device control block performs these operations:

* Set-Status - Set status of DCB to IDLE, INPUT-PRESENT, or OUTPUT-
PRESENT.

Event Manager The event manager operates using these functions.

"* Count-Done - This operation counts the number of done events raised by run-
ning object control blocks in the application.

"* Advance-Clock - Advance the simulation clock to the time indicated by the
earliest next event once all component object control blocks have checked in
with a done event and there are no more time t events scheduled.

"* Add-Event - Add an event to the list of events ordered by time and priority.

"* Delete-Event - Remove an event from the schedule and place it in the Old-Events
list.

"* GetNextEvent - Get the next event to be serviced.

"* Service-Event - Call an event's service routine.

Object Control Block The object control block performs these tasks.

* Activate - Set object control block status attribute to running.

91

"* Block - Set a object control block status attribute to blocked.

"* Is-Valid - A boolean function which indicates if a object control block's input
is valid.

Registrar These are the operations performed by the registrar.

"* Query-Model - Query a model for its required executive objects.

"* Create-Objects - Add the proper number and type of executive objects to the
application executive based on the results of Query-Model.

"* Change-Schedule - Allow the user to view and change the application's list of
execution events. The user may use this opportunity to add stop events to the
schedule.

A.8 Abstract Objects

The purpose of this phase in the domain analysis is to identify and express prim-

itives in the domain of application executives. Once the primitives were defined, they

were formalized into groups of REFINE object, attribute, and function declarations that

followed the format outlined by Randour in (18). This formalization method is outlined

in Chapter 5. The results of the formalization are presented in this section by showing the

final, implemented object model structure, and by listing each primitive defined during

this research effort.

During domain analysis, it became apparent that the event manager object played a

central role in application executive operation and that its functional model would be useful

during formalization of the domain model. The object model of the application executive

contained connections, but contained no coherent way to manage them. If they are to be

controlled by the executive, the mission of controlling them should be encapsulated in a

primitive. The new primitive, the connection manager was also modeled functionally as

it was formalized. Tables 3 - 5 depict the functional models used to create the formal

primitive objects presented in this section.

92

Operation Service Transmit Event
Precondition 3., (x is Transmit-Event A y is Connection-Obj A

y in Connection-List A
Transmit-Export-Name(x) = Export- Name(Source- Export (y)) A
Transmit- Subsystem- Name(x) = Export- Owner- Sub(Source- Export (y)) A

_____________ ransmit-Primitive-Name(x) = Producer(Source- Export(y)))

Postcondition (Connection- State(y) = Not-Consumed A

Old-Data(y) = Export-Value(Source- Export(y)) A
_____________Receive Event Rcheduled for Sink-Import(y))

Operation Service Receive Event
Precondition 3.,y (x is Receive-Event A y is Connection-Obj A

Receive-Import-Name(x) = Import-Nanie(Sink-Import(y)) A
____________Object-Name(x) = Consumer(Sink-Import(y)))

Postcondition 3,: (x is New-Data-Event Scheduled for Sink-Import(y)) A
Connection Status(y) = Consumed A

Import- Changed(Sink-Import (y)) A
____________Import-Value(Sink-Import(y)) = Old-Data(y)

Table 3. Connection Manager Functional Model

Operation Start
IPrecondition 3-, (x is Start-Event A x is First(Schedule))

Postcondition 3. (x is Start-Event A x is last(Old-Events) A[Operation Service an Event
Precondition 3.r (x is First(Event-List) A Ev-Time(x) = Current-Time)
Postconditi;on x ast(Old-Events)

Operation IFAdd Event
Precondition 3, :~ (x is Event) A

(first(subsystem-names(x)) 0 name(executive)) A

_________(x -, in event-list V x -i in Old-Events)
Postcondition IF(x in Event-List)
Operation If ncrement Clock
Precondition 3F B, :(x is First (Event- List) A

__________IfEv-Time(x) $6 Current-Time)
Postcondition IfCurrent-Time = Ev-Time(First(Event- List))
Operation IfStop
Precondition 3,,: (x is Stop-Event A x is First (Event-List))
Postcondition IfExecutive Halts

Table 4. Event-Driven Event Manager Functional Model

93

Operation Start
Precondition 3, : (x is Start-Event A x is First(Schedule))
Postcondition 3. : (x is Start-Event A x is last(Old-Events) A

Current-Time = Start-Time(x))

Operation Service an Event
Precondition 3, : (x is First(Event-List) A Ev-Time(x) = Current-Time)
Postcondition x = Last(Old-Events)

Operation Add Event
Precondition 3, : ((x is Event) A

(first(subsystem-names(x)) 5 name(executive)) A
(x -, in event-list V x -' in Old-Events))

Postcondition (x in Event-List A x in Export-Area)

Operation Increment Clock
Precondition 3, : (x is First(Event-List) A

Ev-Time(x) 6 Current-Time)
Postcondition Current-Time = Current-Time + 1

Operation Stop
Precondition 13 : (x is Stop-Event A x is First(Event-List))
"Postcondition IIExecutive Halts

Table 5. Time-Driven Event Manager Functional Model

94

A.8.1 Application Executive Object Structure.

in-package("AVSI")
in-grammar('user)

var Application-Exec-Obj object-class subtype-of Primitive-Obj

var Connection-Ngr-Obj : object-class subtype-of Application-Exec-Obj
var Component-Wgr-Obj object-class subtype-of Application-Exec-Obj

var Device-Ngr-Obj object-class subtype-of Application-Exec-Obj
var Event-Kgr-Obj object-class subtype-of Application-Exec-Obj
var Ed-Seq-Ngr-Obj object-class subtype-of Event-Ngr-Obj
var Td-Seq-Rgr-Obj object-class subtype-of Event-Ngr-Obj
var Exec-Clock-Obj object-class subtype-of lpplication-Exec-Obj
var Ed-Clock-Obj object-class subtype-of Exec-Clock-Obj
var Td-Clock-Obj object-class subtype-of Exec-Clock-Obj

A.8.2 Executive Domain Model Primitives. This section contains the formal

domain models of these primitives:

"* Connection Manager

"* Event-Driven Clock Manager

"* Event-Driven Sequential Event Manager

"* Time-Driven Sequential Event Manager

"* Time-Driven Clock Manager

A.8.2.1 Connection Manager.

!! in-package("AVSI")
i in-grammar('user)

Filename: connect ion-manager. re
Author: Bob Welgan

Date: 9 Sep 93

Modifications:

Description:

This file describes a primitive object in the domain of application executives.
The primitive object definition supplied here conforms to the primitve object
template in Anderson's Appendix A.

The connection-manager contains a list of connection objects and the methods
necessary to manipulate the list and correctly change the status and contents
of each connection as indicated by an element of that list. The conection

95

manager raises receive events.

This primitive relies heavily on these declarations which appear in

the OCU domain model
var CONNECTIOE-OBJ object-class subtype-of World-Obj

var Source-Exp map(CONNECTION-OBJ, export-obj) = {II1
var Sznk-Imp : sap(COINECTION-OBJ, import-obj) - {I I}
var Connection-State map(CONNECTION-OBJ, symbol)

computed-using

Connection-State(x) - 'Empty
var Old-Data map(CONNECTION-OBJ, any-type) - {[
var New-Data : sap(CONNECTION-OBJ, any-type) = {I I}

li1

var CONNECTION-MGR-OBJ-INPUT-DATA set(import-obj) =

(set-attrs (make-object('import-obj),
'import-name, 'in-event,
'import-category, 'an-event, %what kind of event
'import-type-data, 'event-obj)} %and which connection

var CONNECTION-MGR-OBJ-0UTPUT-DATA : set(export-obj) =

{set-attrs (make-object('export-obj),
'export-name, 'new-event,
'export-category, 'an-event, %events that

'export-type-data, 'set-event-obj)} %connection-mgr produced

var CONNECTION-MGR-OBJ-COEFFICIENTS : map (CONNECTION-MGR-OBJ, set (name-value-obj))
computed-using

CONNECTION-MGR-OBJ-COEFFICIENTS(x) = {}

var CONNECTION-MGR-OBJ-UPDATE-FUNCTION map(CONNECTION-NGR-OBJ, symbol)

computed-using

CONNECTION-MGR-OBJ-UPDATE-FUNCTION(x) = 'CONNECTION-MGR-OBJ-UPDATE1

% Other Attributes:
var CONNECTION-MGR-CONIECTION-LIST : nap (CONNECTION-MGR-OBJ, set (CONNECTION-OBJ))

computed-using

CONNECTION-MGR-CONNECTION-LIST(x) = {}

form Make-CONNECTION-MGR-Names-Unique
unique-names-class ('CONNECTION-MGR-OBJ, trvie)

%- Service Transmit and Receive

%- This update function responds to transmit, and receive events by moving

%- data from one export area to one import area.

96

function CONNECTION-MGR-OBJ-UPDATE1 (subsystem subsystem-obj,
connection-urp CONMECTION-NGR-OBJ)

set(event-obj) -

format(debug-on, "CONNECTION-MGR-OBJ-UPDATE on -s-%", name (connect ion-mg)));

let (in-event: event-obj - get-import('curr-event, subsystem, connection-lpr),
connection-status set(symbol) - (},

event-list set(event-obj) = {},
Found : Boolean = False)

format(debug-on, "Connect ion-manager operating on -A'%", in-event);

(enumerate Obj over CONNECTION-MGR-CONNECTION-LIST(connection-mgr) do

%If it's a transmit event that's being handled, then set the CONNECTION

%to the proper values to indicate new data has entered the downstream
%connection(s) and not been consumed.

%conditionally raise a receive event here, if
%the new-data is different than the old data...

(if Transmit-Event-Obj(in-event) then
((((transmit-export-name(in-event) = export-name(Source-Exp(Obj))) &
(transmit-subsystem-name(in-event) = exp-owner-sub(Source-Exp(Obj))) &
(transmit-primitive-name (in-event) = producer (Source-Exp(Obj))))

-- > (('Not-Consused - connection-state(Obj)) &
(Found) &

(Old-Dat a(Obj) <- export-value(Source-Exp(Obj)))));
(Found -- >

(format(debug-on, "Conngr now servicing Tx event -A-%", in-event);
Found <- False;

(event-list <- event-list with set-attrs(make-object('receive-event-obj),
'name, 'RX-2,
Ysubsystem-names, [imp-owner-sub(Sink-Imp(Obj))],

'object-name, consumer(Sink-Imp(Obj)),

'receive-import-name, import-name (Sink-Imp (Obj)),
'priority, 10,
'Ev-Time, 0)))))

%If it's a receive event, set the status to consumed, and write
%the value from the buffer to the target import area, raise a new-data

%event, too. Remeber to set the flag, too

elseif Receive-Event-Obj(in-event) then

((((receive-import-name(in-event) = Import-Name(Sink-IMp(Obj))) I

(object-name (in-event) = consumer (Sink-Imp(Obj))))
-- > (('Consumed - connection-state(Obj)) &

(connection-status - {'Consumed)) &
(import-changed(Sink-Imp(Obj))) &
(import-value(Sink-Imp(Obj)) <- Old-Data(Obj))));

format(debug-on, "Con Mpgr now Servicing Rx Event -A-%", in-event);

(event-list <- event-list with set-attrs(make-object('new-data-event-obj),
'subsystem-names, iuport-path(Sink-Imp(Obj)),
'object-name, first(import-path(Sink-Imp(Obj))),

'priority, 10,

97

'Ev-Time, 0)))));

%deternime final connection status

% 'Not-Consumed in connection-status

% -- > final-con-stat - 'Not-Cunsumed;

(enumerate Obj over event-list do
(format(debug-on, "Conn Kgr Raised this event -A~'. Obj)));

(if "Empty(event-list) then
(event-list <- event-list union

set-export (subsystem, connection-mgr,

{set-attrs(make-object('name-value-obj),

'name-value-name, 'new-event,

'name-value-value, (event-list intersect event-list))})));

event-list <- {J; %return no events, not
%even the Tx events made

%by the set-export command

event-list

% --------------------------
I-
I- Fill Connection Ngr List
I-
I- This utility adds connection objects to the CONNECTION-MGR-CONfECTION-LIST
I- using the links created by the application specialist during application

I- composition. It gets these connection objects from the application
I- descriptor object.
I-

% --------------------------

function Fill-Connection-Mgr-List (in-app : spec-obj)=

format(debug-on, "Filling the Ed-Seq-Connection-List for Application-A•",

in-app);

let(conn-mgr connection-mgr-obj - arb({x I (x : connection-mgr-obj) &
(connect ion-mgr-obj (x)) &
(x in kids(in-app))}),

descriptor descriptor-obj = arb({y I (y : descriptor-obj) &
(descriptor-obj (y)) &
(y in kids(in-app))}),

conn-set set(connection-obj) = 0)

conn-set <- Top-Level-Connections(descriptor);
CONNECTION-MGR-CONNECTION-LIST(conn-mgr) <- conn-set

A.8.2.2 Event-Driven Clock Manager.

98

* in-packageC"AVSI")
: in-gramar ('user)

Filename: ed-clock. re

Author: Bob Velgan
Date: 6 Sep 93

Nodifications:

Descript ion:

This file describes a primitive object in the domain of application executives.

The primitive object definition supplied here conforms to the prinitve object
template in Anderson's Appendix A.

The clock contains a time value and the methods necessary to change the time

and output it's value.

I1I

% var ED-CLOCK-OBJ : object-class subtype-of Application-Exec-Obj

var ED-CLOCK-OBJ-INPUT-DATA : set(import-obj) =

{set-attrs (make-object ('import-obj),

'import-name, 'new-time,
'import-category, 'time,
'import-type-data, 'integer))

var ED-CLOCK-OBJ-OUTPUT-DATA : set(export-obj) =

{set-attrs (make-object('export-obj),
'export-name, 'current-time,
'export-category, 'time,
'export-type-data, 'integer)]

var ED-CLOCK-OBJ-COEFFICIENTS : map(ED-CLOCK-OBJ, set (name-value-obj))

computed-using
ED-CLOCK-OBJ-COEFFICIENTS(x) = {}

var ED-CLOCK-OBJ-UPDATE-FUNCTION : nap(ED-CLOCK-OBJ, symbol)

computed-using
ED-CLOCK-OBJ-TJPDATE-FUNCTION(x) = 'ED-CLOCK-OBJ-SET-ED-CLOCK

% Other Attributes:
var ED-CLOCK-OBJ-TINE : map(ED-CLOCK-OBJ, integer)

computed-using
ED-CLOCK-OBJ-TIME(x) - 0

form Hake-ED-CLOCK-Names-Unique

unique-names-class('ED-CLOCK-OBJ, true)

% -----------------------
•- Function Set-ED-CLOCK

7- This function sets the ED-CLOCK to the time indicated in the import area.

99

function ED-CLOCK-OBJ-SET-ED-CLOCK (subsystem : subsystem-obj,
the-clock : ED-CLOCI-OBJ)

: set(event-obj) -

format(debug-on, "ED-CLOCI-OBJ-SET on -sa-", name (the-clock));

let (time-value : integer - get-import('new-time, subsystem, the-clock),
event-lint set(event-obj) - {})

ED-CLOCK-OBJ-TINE(the-clock) -- tine-value;
format (true, "The current simulation time is -d~%", tine-value);
event-list <- set-export(subsystem, the-clock,

{set-attrs(make-object('name-value-obj),

'name-value-name, 'current-time,

'name-value-value, time-value)});
%throw the transmit events away
event-list <- 0};

event-list

A.8.2.3 Event-Driven Sequential Event Manager.

! in-package("AVSI')

in-grammar('user)

Filename: ed-seq-event-man.re

Author: Bob Welgan
Date: 6 Sep 93

Modifications:

Description:

This file describes a primitive object in the domain of application executives.
The primitive object definition supplied here conforms to the primitve object
template on page 2, Appendix A, Anderson's thesis.

The schedule contains a list of events and the methods necessary to manipulate
the list.

lit

Svar ED-SEQ-NGR-OBJ : object-class subtype-of Application-Exec-Obj

var ED-SEQ-NGR-OBJ-INPUT-DATA : set(import-obi) =
{set-attrs (make-object('import-obj),

'import-name, 'simulation-time,
'import-category, 'time,

'import-type-data, 'integer),

set-attrs (make-object('import-obj),
'import-name, 'new-event,
'import-category, 'an-event,
'import-type-data, 'set-event-obj) }

100

var ED-SEQ-NGR-OBJ-OUTPUT-DATA set(export-obj)
{set-attrs (make-object('export-obj),

'export-name, 'curr-event,
' export-category, 'an-event,
'export-type-data, 'event-obj),

set-attrs (make-object('export-obj),
'export-name, 'simulation-time,
'export-category, 'time,
'export-type-data, 'integer)}

var ED-SEQ-NGR-OBJ-COEFFICIENTS : map(ED-SEQ-MGR-OBJ, set (name-value-obj))
computed-using

ED-SEQ-RGR-OBJ-COEFFICIEITS(x) - {}

var ED-SEQ-NGR-OBJ-UPDATE-FUNCTION :ap(ED-SEQ-MGR-OBJ, symbol)
computed-using

ED-SEQ-NGR-CBJ-UPDATE-FUICTIOE (x) = 'ED-SEQ-MGR-OBJ-UPDATE1

KEd-Seq-Ngr Object Attributes

var ED-SEQ-MGR-OBJ-EVENT-LIST - map(ED-SEQ-IIGR-OBJ, seq(EVEiT-OBJ))
computed-using

ED-SEQ--GR-OBJ-EVEIT-LIST(x) - [J

var ED-SEQ-MGR-OBJ-OLD-EVEIlS : map(ED-SEQ-XGR-OBJ, seq(EVElT-OBJ))
computed-using

ED-SEQ-MGR-OBJ-OLD-EVEUTS(x) ,]

var ED-SEQ-MGR-OBJ-CURREIT-EVENT map(ED-SEQ-MGR-OBJ, EVENT-0BJ)
computed-using

ED-SEQ-KGR-OBJ-CURRENT-EVENT(x) - first (ED-SEQ-MGR-OBJ-EVENT-LIST(x))

form Nake-ED-SEQ-MGR-Iames-Unique
unique-names-class ('ED-SEQ-NGR-OBJ, true)

% --------------------------
-
%- Event-Driven-Sequential-Manager-Object Update Function

V- This rather large primitive update function is broken into three different
%- steps. The update begins by servicing the current event. Then, it removes
V- that event from the event list. Finally, it places new events, raised by
V- the application the executive is controlling, in the event list. This cycle
V- continues until there are no more events. These steps are written as
K- separate Refine functions to make them easy to test and read.

%K--------------------------

function ED-SEQ-NGR-OBJ-UPDATE1 (subsystem subsystem-obj,
event-mgr ED-SEQ-NGR-OBJ) set(event-obj)

format (debug-on, " Events are now being serviced by -s'-", name(event-mgr));

let (exec-events set(event-obj) -

101

new-events : set(event-obi) -

Running Boolean - (-Empty(ED-SEQ-NGR-OBJ-EVENT-LIST(event-mgr))
-Stop-Event-Obj (last (ED-SEQ-NGR-OBJ-OLD-EVENTS(event-.gr)))),

New-Ones Any-Type - 'undefined,

Really-New set(event-obj) - 0,

Sin-Tine Integer - get-import('simulation-tine, subsystem, event-mg),

Done : Boolean - False)

(if Running then
New-Ones <- get-import('new-event, subsystem, event-mgr);
format (debug-on, "New-Ones are -A-", New-Ones);

(Cew-Ones -- 0) -- >
((if Event-Obj (New-Ones) then

(Really-New <- Really-New with New-Ones)

else Really-New <- New-Ones);
(enumerate Obj over Really-New do

(if (Event-Obj(Obj) &

(Obj -in ED-SEQ-NGR-OBJ-EVUT-LIST(event-mgr)) &

(Ubj -in ED-SEQ-NGR-OBJ-OLD-EVENTS(event-.gr))) then

((new-events <- new-events with Obj);

(format(debug-on, "Event Manager adding this event from import -A-",
0bj)))))) ;

% if any new events are valid, add them...
"Empty(new-events)

-- > (Ed-Add-Events (subsystem, event-mWr, new-events));

%service next event
(Ev-Tine (ED-SEQ-MGR-OBJ-CURRENT-EVENT(event-mgr)) - Sin-Time)

-- > new-events <- Ed-Service-Event(subsystem, event-mg);

(enumerate Obj over new-events do
(Done-Event-Obj(Obj) -- > ((Done <- True);

(exec-events <- new-events))));
-Done -- >

(exec-events <- exec-events union {e I (e :event-obj) f

(e in new-events) k

(first(subsystem-names(e)) = 'app-exec)};

new-events <- setdiff(new-events, exec-events);

%We cannot update the same primitive more than one at any time
(enumerate Obj over new-events do
'Update-Event-Obj (Obj) ft
(e-(x) ((x in (ED-SEQ-MGR-OBJ-EVENT-LIST(event-mgr)) or

x in (ED-SEQ-MGR-OBJ-OLD-EVENTS(event-mgr))) a

Update-Event-Obj (x) &
(Ev-Tize(Obj) + Sin-Time = Ev-Time(x)) I

(Object-Name(Obj) - Object-Name(x)) &

(Subsystem-Names (Obj) - Subsystem-Names (x)))))

-- > Obj -in new-events);

%We cannot send the same primitive more than one new data

%notification at any one time
(enumerate Obj over new-events do

(New-Dat a-Event-Obj (Obj) &

(ex (x) ((x in (ED-SEQ-NGR-OBJ-EVENT-LIST (event-mag)) or

102

x in (ED-SEQ-IGAR-OJ-OLD-EVENTS(event-mgr))) a
New-Data-Event -Obj (x) A

(Ev-Tine(Obj) + Sim-Time - Ev-Tine(x)) A
(Objoct-lame(Obj) - Object-Name(x)) a
(Subeystem-lames(Obj) - Subsystem-Names(x)))))

-- > Obj -in new-events);

Ed-Add-Events(subeystem, event-mgr, new-events); ladd events raised by app

%if service event has not generated a clock update, then check to see if one

%should be generated

"ex(x) (z in exec-events I
Update-Event-Obj (x) a
(Object-lame (x) - 'global-timer))

-- > exec-events <- exec-events union
Check-Increment-Conditions(subsystem, event-mgr)));

exec-events

X- Ed-Add-Events

X- This mehtod gets all the events raised as a result of application executive
Z- subsystem execution and places then in the event-mgr.

% -----------------------
function Ed-Add-Events (subsystem : subsystem-obj,

event- W ED-SEQ-NGR-OBJ,
in-events set(event-obj)) =

let (Done : Boolean = False,
index : Integer - 1,
Sin-Tine : Integer - get-import('simulation-tine, subsystem, event-mVr))

format (debug-on, "New Event Added To Event-Ngr -A~" ,in-events);

%add the current absolute time to each event's relative time in the
%set of incoming events

(enumerate new-event over "n-events do
(Ev-Tine(new-event) <- CL -0e(new-event) + Sin-Time)));

%take each event object and place it in the event-mgr one at a time
%the event must either go at the head of "te sequence, in the middle,
%or at the end.
Ufind out where it should go...

(enumerate new-event over in-events do
(while ((index <- size (ED-SEQ-NGR-OBJ-EVENT-LIST(event-mgr))) I -Done) do

((Ev-Time(new-event) < Ev-Time((ED-SEQ-NGR-OBJ-EVENT-LIST(event-mgr)) (index)))
-- > (Done);

103

(Ev-Time(new-event) > Ev-Time((ED-SEQ-NGR-OBJ-EVENT-LIST(event-mgr)) (index)))

-- > (index - (index + 1));

((Ev-Time (new-event) - Ev-Time ((ED-SEQ-NGR-OBJ-EVEIT-LIST (event-mV)) (index))) &
(Priority(new-event) (- Priority ((ED-SEQ-NGR-OBJ-EVEUT-LIST(event-mgr)) (index))))

-- > (index - (index +));

((Ev-Time (new-event) - Ev-Tiue ((ED-SEQ-NGR-OBJ-EVEUT-LIST(event-mgr)) (index))) t

(Priority(new-event) > Priority ((ED-SEQ-NGR-OBJ-EVEIT-LIST(event-mgr)) (index))))

-- > (Done))); %end while

%Place the new event object at the location pointed to by index

ED-SEQ-NGR-OBJ-EVENT-LIST(event-mr)
<- insert (ED-SEQ-EGR-OBJ-EVENT-LIST(event-mgr), index, new-event);

Done <- False;

index <- 1)

%- Check-Increment-Conditions

X- This checks the current event manager imports and state variables to see

Z- if it is the right time to increment the clock. If the conditions indicate

Z- the clock should be set to a new time, this function sets an export area to

a new time. Note that service of a start event invovles an un-conditional

•- update of the event manager's time export, and is not considered here.

% ---------------

function Check-Increment-Conditions (subsystem : subsystem-obj,

event-met : ED-SEQ-NGR-OBJ)
: set(event-obj)

let (out-events : set(event-obj) - {J,
clk-time : integer - get-import('sinulation-time, subsystem, event-mgr),
new-time : integer - 0)

%get the candidate new time from either the event-list or old-events depending

%on whether or not the event-list is empty

(if Empty (ED-SEQ-RGR-OBJ-EVENT-LIST (event-mgr)) then
(new-time <- Ev-Time (last (ED-SEQ-NGR-OBJ-OLD-EVEITS(event-mgr) ")

else

(new-time <- Ev-Time (ED-SEQ-NGR-OMJ-CU•tRENT-EVEUT(event-agr))));

(if ((clk-time < new-time) ft

"(Transmit-Event-Obj (last (ED-SEQ-NGR-OBJ-OLD-EVENTS(event-mgr))) or

Receive-Event-Obj (last (ED-SEQ-NGR--BJ-DLD-EVENTS (event-mV))))) then

(out-events <- out-events union
set-export (subsystem, event-mgr, {set-attrs

(make-object ('name-value-obj),

'name-value-name, 'simulation-time,

'name-value-value, new-time)});
out-events <- 0}; U scrub out transmit events
out-events <- gen-update-event ('global-tiner, [name (subsystem)])));

104

out-events

%1-------------------

1-Ed-Service-Event

X-This is the routine where the current event ia decoded and control
Z-is passed to model components, or update events are scheduled for
7-other executive primitives which govern the clock or the passing of

V- data.

function Ed-Service-Event (subsystem :subsystem-obj,
event-mgr :ED-SEg-NGR-OBJ) :set (event-obj)-

format (debug-on. "ED-SEQ-NGR-OBJ-SERVICIIG event -%\\pp\\VV',
ED-SEQ-NGR-DBJ-WURAEU-EVEMr(event-mV));

let (event-list :set(event-obj) - .
trash-events set (event-obj) -(,

target-subsys subsystea-obj - undefined,
bad-ones seq(event-obj) -0.

new-time integer - 0,
in-event EVUNT-OBJ - ED-SEQ-NGR-0BJ-CURRENT-EVEN(event-Wg))

Idetermine what subtype of event it is, and service it here or
%send and event to the controller to tell another executive

Xprimittive to service it.

% only remove one type of event object until this checks out o.k....
%remember what name-vale-obj does with multiple set states...

Remove-Event-Obj (in--event)
-- ((event-type~in-event) -'Transmit)--

(bad-ones - (e I (e :transait-event-obj) &t
(e in ED-SEQ-NGR-OBJ-EVEN-LIST (event-mg)) &
(transuit-primitive-name(e) -object-name (in-event)) f
(transmit-subsystem-name(e) -first (subsystem-names (in-event))))));

((event-type(in--event) -'Receive) -- >

(bad-ones - C e I (e receive-event-obj) It
(e in ED-SEQ-NGR-OBJ-EVEUTY-LIST(event-mg))
Cobject-name(e) - object-name~in--event)) It
(receive-import-name Ce) - receive-import-name (in-event))
(subsystem-names~e) -subsystem-names~in-event))J));

((event-type~in-event) - Update) -- >

(bad-ones -[e I (e update-event-obj) It
(e in ED-SEQ-NGR-OBJ-EVEUT-LIST(event-mgr)) f
(object-name~e) - object-name~in-event)) &
(subsystem-names~e) - subsystem-names~in-event))]));

((event-type~in-event) -'Set-State) -- >

(bad-ones - E e I (e set-state-event-obj) &t
(e in ED-SEQ-NGR-OBJ-EVEI-LIST(event-mgr)) f

105

(object-name(s) -object-name(in-event))
(subsystem-names(e) - subsystem-names(in-event))D));

%take all the events you find in bad ones and take then out of the event list.

(enumerate Obj over ED-SEQ-1t3R-OIBJ-EYUNT-LIST(event-mg) do
((Obj in bad-ones) -- > (Obj -in ED-SEEJ-NGR-Ofl-EVEUT-LIST(event-mg))));

Receive-Event-Obj (in-event) %if Rx then update conection manager to handle it
-- > (event-list - gen-update-event('conn-mg, [naae~subsystem))));

Start-Event-Obj (n-event)
->((new-time <- Start-Tine(in-event))

(event-list - gen-update-event ('global-timer, Ename(subsystea)J));

-Start-Event-Obj (in-event)
-- > (new-time <- Ev-Time (in-event));

Stop-Event-Obj (in-event)
->(event-list - {set-attrs(make-object (done-event-obj),

'name, 'Done-i,
'subsystem-names, [name(subsystem)J,
'object-name, [name(event-mg)J.
'priority, 100,
'ev-time, 0)}); Zstop the simulation

Transmit-Event-Obj (in-event)
-- > (event-list -gen-update-event('conn-ogr [name (subsystem)]));

MTese transforms service new-data-events, update-events, and set-state-events

C(INew-Data-Event-Obj (in-event) or
Update-Event-Obj (in-event) or Set-State-Event-Obj (in-event)) f

(-empty (subsystem-names (in-event))))
-- > (Target-Subsys -find-object('subsystes-obj, first (subsystem-usmes~in-event))));

(Defined?(Target-Subsys) &
(New-Data-Event-Obj (in-event) or
Update-Event-Obj (in-event) or Set-State-Event-Obj (in-event)))

->((Inevents(Target-Subsys) <- {in-event});
(event-list <- execute-subsystem(Target-Subsys)));

%put the set-export transmit events in the trash

trash-events <- trash-events union
set-export (subsystem, event-mgr,
{set-attrs (make-object ('name-value-obj),

'name-value-name, 'simulation-time,
'name-value-value, new-time) });

trash-events <- trash-events union
set-export (subsystem, event-mgr,
{set-attrs(make-object('name-value-obj),
'name-value-name, 'curr-event,
'name-value-value, ED-SEQ-NGR-Ofli-CURREIT-EVENT(event-mr)) 1);

106

%Delete the event from the current event-list
Ed-Serve-Event(subsystem, in-event, event-mgr);

event-list

%- Ed-Serve-Event

%- This mehtod removes an event from the object's event list after it has
V- been serviced.

function Ed-Serve-Event (subsystem : subsystem-obj,
target-event : event-obj,
event-upr : ED-SEQ-NGR-OBJ) =

ED-SEQ-NGR-OBJ-OLD-EVENTS(event-up) <- append(ED-SEQ-NGR-OBJ-OLD-EVEUTS(event-mgr),

Target-Event);

(Target-Event in ED-SEQ-NGR-OBJ-EVEMT-LIST(event-mgr) -- >
Target-Event -in ED-SEQ-NGR-OBJ-EVEUT-LIST(event-mgr))

A.8.2-.4 Time-Driven Clock Manager.

in-package("YVSI")
!! in-gramar('user)

Filename: td-clock .re

Author: Bob Welgan

Date: 6 Sep 93

Modifications:

Description:

This file describes a primitive object in the domain of application executives.
The primitive object definition supplied here conforms to the primitve object

template in Anderson's Appendix A.

The clock contains a time value and the methods necessary to change the time

and output it's value.

118

% var TD-CLOCK-OBJ : object-class subtype-of Application-TD-Obj

var TD-CLOCK-OBJ-INPUT-DATA : set(import-obj) -

{set-attrs (make-object('import-obj),
'import-name, 'new-time,
'import-category, 'time,

107

'import-type-data, 'integer))

Tar TD-cLOCK[-OB 3-OUTPUT-DATA :set (export-obj)-
{set-attrs (.ake-object('export-obj),

'export-name, 'current-time,
'export-category, 'time.
'export-type-data, 'integer),

set-attrs (make-object C export-obj).
'export-name, 'new-event,
'export-category, 'an-event,
'export-type-data, 'set-event-obj))

Tar TD-CLOCI-OBJ-COMFICIENTfS : sap(TD-CLOCK-OBJ, set(name-value-obj))
computed-using

TD-CLOCK-OBJ-COEFFCIEUTS Cx) -

Tar TD-CLOCK-OBJ-UPDATE-FUUCTIOI : ap CTD-CLOCK-OBJ, symbol)
computed-using

TD-CLOCK-OBJ-UPDATE-FUUCTIOI(x) - 'TD-CLDCK-OBJ-SET-TD-CLOCK

% Other Attributes:
Tar TD-CLOCK-OBJ-TINE: map (TD-CLOCK-OBJ, integer)

computed-using
TD-CLOCK-ODJ-TINEWx - 0

form Make-TD-CLOCK-Uames-Unique
unique-names-class C'TD-CLOCI-ODJ, true)

%--- - - - - - - - - - - - - -

X-Function Set-TD-CLOCK

X-This function sets the TD-CLOCK to the time indicated in the import area.

function TD-CLOCK-OBJ-SET-TD-CLOCK (subsystem subsystem-obj,
the-clock :TD-CLOCK-Ofli) : set Cevent-obj)

format (debug-on, "TD-CLOCK-OBJ-SET on -s-%". name (the-clock));

let (time-value :integer -get-importC'new-time, subsystem, the-clock),
new-event :event-obj - undefined,
event-list :set(event-obj) - 0})

TD-CLOCK-OBJ-TIME (the-clock) <- time-value;
format (true, "The current simulation time is -d-%", time-value);
event-list <- set-export(subsystem, the-clock,

{set-attrs (make-object(C name-value-obj),
'name-value-name, 'current-time,
'name-value-value, time-value)));

new-event <- Arb(gen-transmit-event (name (subsystem),
'current-time, name(the-clock)));

lame (new-event) <- 'clock-update;

108

subsystem-names(new-event) <- [name(subsystem)];

event-list <- set-.xport(subsystem, the-clock,
{set-attrs (make-object ('name-value-obj),

'name-value-name, 'new-event,
'name-value-value, {new-eventl)1);

event-list <- {};
event-list

A.8.2.5 Time-Driven Sequential Event Manager.

! in-package("AVSI")
in-gramar('user)

#11

Filename: td-seq-event-man.re
Author: Bob Velgan
Date: 6 Sep 93

Modifications: Fixed dual clock updates on start (30 Oct RLV)
Passes copy of application event to model subsystem (22 Nov RLV)

Description:

This file describes a primitive object in the domain of application executives.
The primitive object definition supplied here conforns to the primitve object
template on page 2, Appendix A, Anderson's thesis.

The schedule contains a list of events and the methods necessary to manipulate
the list.
I #

Svar TD-SEQ-RGR-OBJ : object-class subtype-of Application-Exec-Obj

var TD-SEQ-NGR-OBJ-IIPUT-DATA : set(import-obj) -

{set-attrs (make-object('import-obj),
'import-name, 'simulation-time,
'import-category, 'time,
'import-type-data, 'integer),

set-attrs (make-object('import-obj),
'import-name, 'new-event,
'import-category, 'an-event,
'liport-type-data, 'set-event-obj) }

var TD-SEQ-NGR-OBJ-OUTPUT-DATA : set(export-obj) =
{set-attrs (make-object('export-obj),

'export-name, 'curr-event,
'export-category, 'an-event,
'export-type-data, 'event-obj),

set-attrs (make-object('export-obj),
'export-name, 'simulation-time,
'export-category, 'time,

109

'export-type-data, 'integer))}

var TD-SEQ-NGR-OBJ-COEFFICIEUTS :map(TD-SEQ-NGR-OBJ, Bet (name-walue-obj))
computed-using

Th-SEQ-MGR-OBJ-COEFFICIEIS Cx) =(

var TD-SEQ-MGR-OBJ-UPDITE-FUNCTION map CTD-SEQ-MGR-OBJ, symbol)
computed-using

TD-SEQ-NGR-OBJ-UPDATE-FUICTION Cx) - 'TD-SEQ-NGR-OBJ-UPDATE1

XTd-Seq-Ngr Object Attributes

var TD-SEQ-NGR-OBJ-EVEUT-LIST :map(TD-SEQ-NGR-OBJ, seqCEVEUT-OBJ))
computed-using

TD-SEQ--NGR-ODJ-EVENT-LIST(x) =F

war TD-SEQ-MGR-OBJ-OLD-EVENTS : ap CTD-SEQ-KGR-OBJ, seqCEVEIT-ODJ))
computed-using

TD-SEQ-NGR-OBJ-OLD-EVENTS(x) 0

var TD-SEQ-NGR-OBJ-CURREUT-EVENT map (TD-SEQ-MOR-OBJ, EVENT-OBJ)
computed-using

TD-SEQ-NGR-OBJ-CURRENT-EVENT~x) - first CTD-SEQ-NGR-OBJ-EVENT-LIST Cx))

form Nake-TD-SEQ-NGR-Names-Unique
unique-names-class C'TD-SEQ-NGR-OBJ * true)

V- Time-Driven-Sequential-Nanager-Object Update Function

V- This rather large primitive update function is broken into three different
V- steps. The update begins by servicing the current event. Then, it calls

%-a function to determine if the event needs to be rescheduled at a new time.

function TD-SEQ-NGR-OBJ-UPDATEl (subsystem subsystem-obj,
event-mgr TD-SEQ-NGR-OBJ) :set~event-obj)=

format (debug-on, "Events are now being serviced by -s-%", name~event-mg));

let (exec-events set(event-obj) =
new-events set~event-obj) {}
current-time Integer - get-import('simulation-time, subsystem, event-mgr),
Running :Boolean - (-Empty (TD-SEQ-NGR-OBJ-EVENT-LIST (event-mgr)) I

-Stop-Event-Obj (last CTD-SEQ-NGR-OBJ-OLD-EVENTS(event-mgr)))),
New-Ones :Any-Type -'Undefined,
Really-New :set~event-obj) -)
Serviced-An-Event :Boolean = False,
Done :Boolean - False)

(if Running then
1ew-Ones <- get-importC'new-event, subsystem, event-mgr);
format(debug-on, "New-Ones are -A"%", New-Ones);
% check the import for new, valid events from other primitives...

110

(New-Ones -- 0) -- >
((if Event-Obj(New-Ones) then

(Really-New <- Really-New with New-Ones)

else Really-New <- New-Ones));
(enumerate Obj over Really-New do

(if (Event-Obj(Obj) & "New-Data-Event-Obj(Obj) &

(Obj -in TD-SEQ-NGR-OBJ-EVENT-LIST(event-ingr)) I

(Obj -in TD-SEQ-MGR-OBJ-OLD-EVENTS(event-mgr))) then

((new-events <- new-events with Obj);
(format(debug-on, "Event Manager adding this event from import -A-%",

Obj))))) ;

% if any new events are valid, add them...

"Empty (new-events)
-- > (Td-Add-Events(subsystem, event-agr, new-events));

%determine if an event should be serviced now...

((Ev-Time (TD-SEQ-NGR-OBJ-CURRENT-EVENT(event-mgr)) - current-time)
-- > ((new-events <- Td-Service-Event(subsystem, event-tgr)) &

Serviced-An-Event));

Serviced-An-Event
-- > ((enumerate Obj over new-events do %scrub out new-data events

(Eew-Data-Event-Obj(Obj) -- > Obj -in new-events));

%determine if this is done

(enumerate Obj over new-events do
(Done-Event-Obj(Obj) -- > (Done &

(exec-events <- new-events))));

Schedule-New-Event (subsystem, event-mgr)); % re-schedule

"Done -- >
(exec-events <- exec-events union {e I (e :event-obj) •

(e in new-events) I

(first(subsystem-names(e)) - 'app-exec)};
new-events <- setdiff (new-events, exec-events);
Td-Add-Events(subsystem, event-mgr, new-events)); %add events raistd by app

%if this hasn't serviced an event, then must make the clock tick

"Serviced-an-Event
-- > exec-events <- exec-events union Increment-Clock(subsystem,

event-mgr));

Serviced-An-Event <- False;

-Running
-- > (exec-events <- {set-attrs(make-object('done-event-obj),

'name, 'Done-2,
'subsystem-names, [name (subsystem)],
'object-name, [name(event-mgr)],

'priority, 100,
'ev-time, 0)));

(enumerate Obj over TD-SEQ-MGR-OBJ-EVENT-LIST(event-mgr) do

ill

fornat(debug-on, "Event in Event-List -A-%", Obj));

exec-events

% -----------------------
X- Td-Add-Events

V- This mehtod gets all the events raised as a result of application executive
%- subsystem execution and places them in the event-ugr.

function Td-Add-Events (subsystem : subsystem-obj,
event-mgr TD-SEQ-NGR-OBJ,
in-events set(event-obj))

let (Done : Boolean - False,

index : Integer - 1,
Six-Time : Integer - get-import('simulation-time, subsystem, event-mgr))

format (deb-ag-on, "New Event Added To Event-Kgr -A-%",in-events);

%add the current absolute time to each event's relative time in the
%set of incoming events

(enumerate new-event over in-events do
(Ev-Time (new-event) <- (Ev-Time (new-event) + Sin-Time)));

%take each event object and place it in the event-mgr one at a time

%the event must either go at the head of the sequence, in the middle,
%or at the end.
%find out where it should go...

(enumerate new-event over in-events do
(while ((index <- size (TD-SEQ-NGR-OBJ-EVENT-LIST(event-mgr))) & -Done) do

((Ev-Time (new-event) < Ev-Time ((TD-SEQ-NGR-OBJ-EVENT-LIST(event-mgr)) (index)))
-- > (Done);

(Ev-Time (new-event) > Ev-Time ((TD-SEQ-MGR-OBJ-EVENT-LIST(event-mgr)) (index)))
-- > (index - (index + 1));

((Ev-Time(new-event) - Ev-Time((TD-SEQ-NGR-OBJ-EVENT-LIST(event-mgr)) (index))) I

(Priority (new-event) <= Priority ((TD-SEQ-MGR-OBJ-EVENT-LIST(event-mgr)) (index))))
-- > (index = (index + M));

((Ev-Time(new-event) = Ev-Time((TD-SEQ-NGR-OBJ-EVENT-LIST(event-mgr)) (index))) &
(Priority (new-event) > Priority ((TD-SEQ-KGR-OBJ-EVENT-LIST(event-mgr)) (index))))

-- > (Done))); %end while

%Place the new event object at the location pointed to by index

TD-SEQ-MGR-OBJ-EVENT-LIST(event-.gr)
<- insert (TD-SEQ-MGR-OBJ-EVENT-LIST(event-mgr) ,index, new-event);

Done <- False;

112

index <- 1)

V- Increment-Clock

X- This makes the clock tick by sending a new time one time unit greater than

V- the current time to the new-time export object and scheduling an update

V- event for the executive.

% --------------------------

function Increment-Clock (subsystem subsystem-obj,

event-mgr : TD-SEQ-MGR-OBJ) : s.t(event-obj) =

let (out-events : set(event-obj) - 0,

clk-time integer - get-import('simulation-time, subsystem, event-mgr),
new-time integer = 0)

new-time <- clk-time + 1; % note: delay delta is one...

(out-events <- out-events union
set-export (subsystem, event-mr, {set-attrs
(make-object ('name-value-obj),

'name-value-name, 'simulation-time,
'name-value-value,
new-time)});

out-events <- 0}; UX scrub out events raised by set-export
out-events <- gen-update-event('global-tiner, [name (subsystem)));

out-events

% ----------------------
V-
V- Td-Service-Event
V-
V- This is the routine where the current event is decoded and control

V- is passed to model components, or update events are scheduled for

V- other executive primitives which govern the clock or the passing of

V- data.
V-

function Td-Service-Event (subsystem : subsystem-obj,
event-mgr : TD-SEQ-MGR-OBJ) : set(event-obj) =

format(debug-on, "TD-SEQ-oGR-OBJ-SERVICING event -%-\\pp\\V%",
TD-SEQ-MGR-OBJ-CURRENT-EVENT(event-mgr));

let (event-list : set(event-obj) - 0 ,
trash-events : set(event-obj) = {1,
target-subsys : subsystem-obj - undefined,
bad-ones : seq(event-obj) = [,

new-time : integer - 0,
in-event : EVENT-OBJ - TD-SEQ-MGR-OBJ-CURRENT-EVENT(event-mgr))

113

Usetermine what subtype of event it is, and service it here or
%send and event to the controller to tell another executive
%primitive to service it.

% only remove one type of event object until this checks out o.k...
%remember what name-vale-obj does with multiple set states...

Remove-Event-Dbj (in-event)
-- > C((event-type(in-event)- 'Transmit)--

(bad-ones - [e I (e :transmit-event-obj) It
(e in TD-SEQ-RGR-OBJ-EVENT-LIST(event-mgr)) at
(transmit-primitive-name~e) - object-nase (in-event)) f

(transmit-subsystem-name~e) - first (subsystem-names (in-event)))]));

((event-type(in:-event) -'Receive) -->
(bad-ones - C e I (e receive-event-obj) f

(e in TD-SEQ-JIGR-OBJ-EVENT-LIST(event-mgr)) k
(object-name~e) - object-name~in:-event)) &
(receive-import-name Ce) -receive-import-name (in-event)) f

(subsystem-names~e) =subsystem-names(iný-event))J));

((event-type~in-event) ='Update) -- >

(bad-ones - [e I Ce update-event-obj) &
Ce in TD-SEQ-NGR-OBJ-EVEIT-LIST(event-mgr)) A
(object-name~e) - object-name (in-event)) &t
(subsystem-names(e) -subsystem-names~in-event)))));

((event-type~in-event) - 'Set-State) -- >

(bad-ones - (e I (e :set-state-event-obj) &t
Ce in TD-SEQ-MGR-OBJ-EVEUT-LIST (event-mg)) f
(object-name~e) - object-name~in-event)) &
(subsystem-names~e) - subsystem-names(in-eient))J)));

%take all the events you find in bad ones and take then out of the event list.

(enumerate Obj over TD-SEQ-NGR-OBi-EVEIT-LIST(event-mgr) do
((Dbj in bad-ones) -- > (Obj -in TD-SEQ-NGR-OBJ-EVEIT-LIST(event-ug))));

Receive-Event-Obj (in-event) %if Rx then update conection manager to handle it
-- > (event-list =gen-update-event(C conn-mgr, [name (subsystem)]);

Start-Event-Obj (in-event)
->((new-time =Start-Time~in-event)) kt

(event-list gen-update-event ('global-timer, [name(subsystem)J));
%%%%Put another transform here to set the export to start-time on Start-Event
Start-Event-Obj (in-event)

->(trash-events - trash-events union %~put the Tx: events
set-export (subsystem. event-mg, %made by set-export
{set-attrs (make-object(C name-value-obj), %in the trash

'name-value-name, 'simulation-time,
'name-value-value, new-tine)}));

Stop-Event-Obj (in-event)
->(event-list - (set -at trs (make-obj ect('done-event -obj) ,

'name, 'Done-i,

114

'subsystem-names, [name(subsystem)],
'object-name, (name(event-mgr)],
'priority, 100,
'ev-time, 0)); %stop the simulation

Transmit-Event-Obj (in-event)
--> (event-list - gen-update-event(C conn-mgr, [name (subsysteuM));

M~ese transforms service new-data-events, update-events, and set-state-events

C(New-Data-Event-Obj (in-event) or
Update-Event-Obj (in-event) or Set -State-Event -Obj (in-event)) f

(-empty (subsystem-names (in-event))))
--> (Target-Subsys - find-object('subsysten-obj, first (subsystem-names~in-event))));

(Defined' (Target-Subsys) &
(New-Data-Event-Obj (in-event) or
Update-Event-Obj (in-event) or Set-State-Event-Obj (in-event)))

->((IneventsCTarget-Subsys) <- {copy-term(in-event)};
(event-list <- execute-subsystem(Target-Subsys)));

%put the set-export transmit events in the trash

traish-events <- trash-events union
set-export (subsystem, event-mgr,
{set-attrs (make-object (name-value-obj),
'name-value-name, 'curr-event,
'name-value-value, TD-SEQ-NGR-OBJ-CUBRtENT-EVENT(event-gr)) 1);

%remove this event from the event list
Td-Serve-Event (subsystem, in-event, event-mVr);

event-list

%- Schedule-New-Event

V- This mehtod determines if the current event needs to be rescheduled at a
V- later time, and what that later time should be.

function Schedule-New-Event (subsystem subsystem-obj,
event-upr TD-SEQ-NGR-aBJ)

Cf ormat (factive, "Entering the function Schedule-New-Event in TD-EXEC"));

let (event :event-obj = (last (TD-SEQ-MGR-OBJ-OLD-EVENTS~event-mgr))),
new-event :event-obj - undefined,
Done :boolean - false,
time-delta :integer - 1)

format(debug-on, "Reschedule Event testing -A-", event);

Update-Event -Obj (event)

115

-- > (new-event <- make-object(qupdate-event-obj);
name(new-event) <- name(event);
priority(new-event) <- priority(event);

object-name (zew-event) <- object-name (event);

subsystem-names(nee-event) <- subsystem-names(event);

while -Done do
(-ex (x) (z in TD-SEQ-NGR-OBJ-EVEIT-LIST(event-mgr) I

(ev-time(x) - ev-time(event) + time-delta))
-- > (.v-time(new-event) <- time-delta;

Td-Add-Events(subsystem, event-mgr, (nev-event});
Done <- True);

en (x) (x in TD-SEQ-NGR-OBJ-EVEIT-LIST(event-mgr) &

(ev-time(x) - ev-time(event) + time-delta) &
(first (subsystem-names (x)) first (subsystem-names (new-event)) or

(first(subsystem-names(x)) 'app-exec)) •

"Done)
-- > (ev-time(new-event) <- time-delta;

Td-Add-Events(subsystem, event-mgr, (new-event});

Done <- True);

time-delta <- time-delta + 1))

V- Td-Serve-Event

%- This mehtod removes an event from the object's event list after it has
V- been serviced.

% -----------------------
function Td-Serve-Event (subsystem : subsystem-obj,

target-event : event-obj,

event-mgr : TD-SEQ-HGR-0BJ) -

TD-SEQ-MGR-OBJ-OLD-EVENTS(event-ugr) <- append(TD-SEQ-NGR-OBJ-OLD-EVEITS(event-ugr),
Target-Event);

(Target-Event in TD-SEQ-NGR-OBJ-EVEUT-LIST(event-mgr) -- >
Target-Event -in TD-SEQ-NGR-OBJ-EVENT-LIST(event-mgr))

A.9 Summary

The domain analysis process defined in Chapter 3 resulted in both an informal domain

model and a formal domain model of an application executive. The informal portion

consisted of Rumbaugh object and dynamic models. The formal portion consisted of

Architect-OCU compliant primitives, written in the REFINE wide- spectrum language.

116

Appendix B. Test Cases and Results

B. I Introduction

This appendix contains a representative set of the test cases which validated the

operations of the Architect application executive in the event-driven sequential and time-

driven sequential domains. The complete set of test cases and results for the Architect

application executive is available upon request from:

Maj Paul Bailor
AFIT/ENG
2950 P Street
Wright-Patterson AFB, OH 45433-7765

(513)255-9263
DSN 785-9263
email: pbailor@afit.af.mil

B.2 Event-Driven Sequential Sample Test

Three applications, expressed in the OCU architecture-specific language, (of which

the application executive domain specific language is a subset) tested the application ex-

ecutive in the event-driven sequential mode of execution. The test script from the one-

subsystem test is presented below. This test is designed to show that the executive can

control one subsystem, accept events from the subsystem, and include them on the event

list.

% filename: simple-app
7% author : Bob Welgan
% date : 30 Sep 93

% This file, vritten in OCU language, is designed to be parsed into
% the Reline object base. It defines a complete application: model
% subsystems and the event-driven sequential application executive
% subsystem. This application is desinged to exercise the application
% executive.

application definition test-i-app

execution-mode: event-driven-sequential

117

S define appliction subsystems here...

switch sw-1
delay: 0
is debounced
manufacturer: "Riddler"
position: off

switch asw-2
delay: 0
is debounced
manufacturer: "Riddler"
position: off

and-gate and-1
delay: 5
fan-out: 5
is ail-Spec
manufacturer: "BOBCO"
power level: 5.0

led led-1

subsystem sub-1 is

controls: es-1, sw-2, and-i, led-1

imports: Ill SIGIAL BOOLEAN NIL AID-1
(OUTi SUB-1 SV-1)
import-path: (SUB-i)
import-owner: SUB-1 not-changed

112 SIGNAL BOOLEAN NIL AID-1
(OUT1 SUB-1 SV-2)
import-path: (SUB-i)
import-owner: SUB-1 not-changed

Ill SIGNAL BOOLEAN NIL LED-1
(OUTI SUB-1 AID-1)
import-path: (SUB-i)
import-owner: SUB-1 not-changed

exports: OUTi SIGNAL BOOLEAN NIL AID-1
export-path: (SUB-i)
export-owner: SUB-1

OUTi SIGNAL BOOLEAN NIL SW-i
export-path: (SUB-i)
export-owner: SUB-1

OUTi SIGNAL BOOLEAN NIL SV-2
export-path: (SUB-i)
export-owner: SUB-1

update procedure:
update sw-1

118

update sw-2
update and-i
update led-i

%~ define application executive
event-driven-clock global-timer

is-at-tine: 0

event-driven-sequent jal-event-manager event-handler
manages: start-event event 1

ow-tine: 0
for-primitive: event-handler
through-subsystems: app-exec
priority: 100
start-time: 1,

set-state-event event2
ow-time: 1
for-prinitive: sw-i
attr-values: (position, on)
through-subsystems: sub-i
priority: 1,

sot-state-event event3
ev-timo: I
for-primitive: sw-2
attr-values: (position, on)
through-subsystemss: sub-i
priority: 1,

stop-event event4
ev-time: 50
for-priaitivo: event-handler
through-subsystem: app-exec
priority: 100
stop-time: 50

connect ion-manager conn-mgr
manages: connection con-0

subsystem app-oxec is

controls: global-timer, event-handler, conn-mgr

imports: SINULATION-TIME TINE INTEGER 0 EVENT-HANDLER
(CURRENT-TINRE APP-EXEC GLOBAL-TINE)
import-path: (APP-EXEC)
import-owner: APP-EXEC is-changed

IEW-E'YEUT AN-EVENT SET-EVEUT-OBJ 0 EVEUT-RANDLER
(NEW-EVENT APP-EXEC CONN-NGR)
import-path: (APP-EIEC)
import-owner: APP-EXEC is-changed

NEW-TIPE TINE INTEGER 0 GLODAL-TINER
(SINULTION-TIM APP-EIEC EVEUT-HAUDLER)

119

import-path: (APP-EIEC)
import-owner: APP-EXEC is-changed

CURR-EVENT AN-EVENT EVENT-OBJ 0 CONI-NGR

(CURR-EVENT APP-EIEC EVENT-HkNDLER)

import-path: (APP-EXEC)

import-owner: APP-EIEC ia-changed

exports: SINULATIGI-TIME TINE INTEGER 0 EVENT-HANDLER

export-path: (APP-EIEC)

export-owner: APP-EIEC

CURl-EVENT Ai-EVENT EVENT-OBJ 0 EVENT-HANDLER

export-path: (APP-EXEC)
export-owner: APP-EXEC

CURREBT-TIME TIME INTEGER 0 GLOBAL-TIMER
export-path: (APP-EIEC)
export-owner: APP-EXEC

NEV-EVENT AN-EVENT SET-EVENT-OBJ 0 CON-NOR

export-path: (APP-EXEC)
export-owner: APP-EIEC

update procedure:

update global-timer
update event-handler
update conn-mgr

application test-se is

controls: app-exec, sub-1
update procedure:

update app-exec
update sub-1

Here are the results of the test:

(e This is the state of the executive prior to execution s)

.> Cpn 'app-exec)
subsystem APP-EXEC is controls:

GLOBAL-TIMER, EVENT-HANDLER, CONN-MGR

imports:
SIMULATION-TIME TIME INTEGER 0 EVENT-HANDLER

SCURRENT-TINE APP-EIEC GLOBAL-TIMER

) import-path: (APP-EEC) import-owner: APP-EXEC
is-changed

NEW-EVENT AN-EVENT SET-EVENT-OBJ 0 EVENT-HANDLER
(NEW-EVENT APP-EXEC CONN-MGR
) import-path: (APP-EIEC) import-owner: APP-EXEC

is-changed
NEW-TIME TIME INTEGER 0 GLOBAL-TIMER

(SIMULATION-TINE APP-EXEC EVENT-HANDLER
) import-path: (APP-EXEC) import-owner: APP-EXEC

is-changed
CURR-EVENT AN-EVENT EVENT-OBJ 0 CONN-MGR

(CURR-EVENT APP-EXEC EVENT-HANDLER
) import-path: (APP-EXEC) import-ovner: APP-EXEC

120

is-changed
exports:

SIMULATION-TIN TIME INTEGER 0 EVENT-HANDLER
export-path: (APP-EIEC) export-owner: APP-EXEC

CURR-EVENT AN-EVENT EVENT-OBJ 0 EVENT-HANDLER
export-path: (APP-EXEC) export-owner: APP-EIEC

CURRENT-TIDE TIME INTEGER 0 GLOBAL-TIMER
export-path: (APP-EXEC) export-owner: APP-EXEC

NEW-EVENT AN-EVENT SET-EVENT-OBJ 0 CONN-MGR
export-path: (APP-EXEC) export-owner: APP-EXEC

initialize procedure: update procedure:

update GLOBAL-TIMER update EVENT-HANDLER update CONN-MGR

.> (pn 'event-handler)

event-driven-sequent jal-event-aanager EVENT-HANDLER

manages:
start-event EVENTI ev-time: 0 for-primitive: EVENT-HANDLER

through-subsystems: APP-EXEC priority: 100 start-time: 1,

set-state-event EVENT2 ev-tiue: I for-primitive: SV-i
attr-values: (POSITION, ON) through-subsystems: SUB-I

priority: 1,
set-state-event EVENT3 ev-time: 1 for-primitive: SW-2

attr-values: (POSITION, ON) through-subsystems: SUB-1
priority: 1,

stop-event EVENT4 ev-time: 50 for-primitive: EVENT-HANDLER

through-subsystems: APP-EIEC priority: 100 stop-time: 50
.> (ar 16)

Rule successfully applied.

application definition TEST-1-APP
execution-mode: EVENT-DRIVEN-SEQUENTIAL SW-i SW-2 AND-i

LED-1 SUB-1 GLOBAL-TIMER EVENT-HANDLER COIN-MGR APP-EXEC

TEST-ME
S> (ar 15)

The current simulation time is 1 (e Start time is 1 e)

scavenging ... done
The current simulation time is 6
LED LED-1 - (e The LED lit at time 6e)
The current simulation time is 50

Execution Stopped

Rule successfully applied.
application definition TEST-i-APP

execution-mode: EVENT-DRIVEN-SEQUENTIAL SW-1 SW-2 AND-1
LED-1 SUB-1 GLOBAL-TIMER EVENT-HANDLER CONN-MGR APP-EXEC

TEST-ME
S> 1ar i8)

Rule successfully applied.
application definition TEST-1-APP

execution-mode: EVENT-DRIVEN-SEQUENTIAL SW-1 SW-2 AND-I
LED-1 SUB-1 GLOBAL-TIMER EVENT-HANDLER CONN-MGR APP-EXEC

TEST-ME

(e This is the Old-Events List after execution e)

.> Car 19)
start-event EVENTi ev-time: 0 for-primitive: EVENT-HANDLER

through-subsystems: APP-EXEC priority: 100 start-time: 1

121

set-state-event EVENT2 ow-time: 1 for-primitive: SW-1
attr-values: (POSITION, ON) through-subsystems: SUB- 1

priority: 1

set-state-event *UNDEFINED* ev-time: 1 for-primitive:
SW-1 attr-values: (OUTI, T) through-subsystems: SUB-1

priority: 5

transmit-event e*IDEFINED* ev-time: 1 fron-primitive:
Si-1 in-subsystem: SUB-1 from-export: OUT1 priority: 50

set-state-event EVENT3 ev-time: 1 for-primitive: SW-2
attr-values: (POSITION, 0) through-subsystems: SUB-1

priority: 1

set-state-event *UIDEFINED* ev-time: 1 for-primitive:

SW-2 attr-values: (OUTI, T) through-subsystems: SUB-i

priority: 5

transmit-event eUNDEFINED* es-time: 1 from-primitive:
SV-2 in-subsysten: SUB-i from-export: OUTi priority: 50

update-event *UNDEFINED* ev-time: 1 for-primitive: AND-1
through-subsystems: SUB-1 priority: 1

set-state-event eUNDEFINED* eo-time: 6 for-primitive:
AID-1 attr-values: (OUT1, T) through-subsystems: SUB-1

priority: 5

transmit-event *UNDEFINED* ev-time: 6 from-primitive:

AND-1 in-subsystem: SUB-1 from-export: OUTi priority: 50

update-event *UNDEFINED* ev-time: 6 for-primitive: LED-1
through-subsystems: SUB-1 priority: 1

set-state-event *UNDEFINED* ev-time: 6 for-primitive:

LED-1 attr-values: (STATE, ON) through-subsystems: SUB-1

priority: 5

stop-event EVET4 ev-time: 50 for-primitive: EVENT-HANDLER
through-subsystems: APP-EXEC priority: 100 stop-time: 50

Rule successfully applied.

application definition TEST-1-APP
execution-mode: EVENT-DRIVEN-SEQUENTIAL SW-i SW-2 AND-1

LED-1 SUB-1 GLOBAL-TIMER EVENT-HANDLER CONN-MGR APP-EXEC

TEST-ME

B.3 Time-Driven Sequential Sample Test

Three applications tested Architect application executive time-driven sequential op-
eration. This exercised the executive's ability to control the flow of data between two,
top-level subsystems in time-driven sequential mode.

122

S filename: two-sub-test
% author Bob Velgan

Sdate : 4 Nov 93
I

% This file, written in OCU language, is designed to be parsed into
% the Refine object base. It defines the application executive
% subsystem. Although it is saved as an application definition, it
% does not define an entire application. The user must insert model
% components from a different domain into the Refine object base and
% link the model to the executive subsystem defined here.

application definition td-test

execution-node: tine-driven-sequential
connected-by
connection con-O

links: CURRENT-TIME TIME INTEGER 0 GLOBAL-TIMER
export-path: (APP-EXEC GLOBAL-TIMER)
export-owner: APP-EXEC

to-imp: SIX-TINE TIME INTEGER 0 the-tank
()

import-path: (SUB-2)
import-owner: SUB-2 not-changed

with-data: NIL
connection-state: NOT-CONSUMED

connection con-1
links: CURRENT-TIME TIME INTEGER 0 GLOBAL-TIMER

export-path: (APP-EXEC GLnBAL-TINER)
export-owner: APP-EXEC

to-imp: SIN-TIME TIME INTEGER 0 the-throttle
()

import-path: (SUB-2)
import-owner: SUB-2 not-changed

with-data: NIL
connection-state: NOT-CONSUMED

connection con-2
links: CURRENT-TIME TIME INTEGER 0 GLOBAL-TIMER

export-path: (APP-EXEC GLOBAL-TIMER)
export-owner: APP-EXEC

to-imp: SIN-TIME TIME INTEGER 0 the-engine
()
import-path: (SUB-2)
import-owner: SUB-2 not-changed

with-data: NIL
connection-state: NOT-CONSUMED

connection con-3
links: OUT1 SIGNAL BOOLEAN NIL ENGINE-START

123

export-path: (SUB-l)
export-owner: SUB-I

to-imp: START SIGNAL BOOLEAN NIL the-engine
()

import-path: (SUB-2)
import-owner: SUB-2 not-changed

with-data: NIL
connection-state: NOT-CONSUMED

connection con-4
links: OUTI SIGNAL BOOLEAN NIL FUEL-PUMP-START

export-path: (SUB-i)
export-owner: SUB-i

to-imp: START SIGNAL BOOLEAN NIL the-tank
()

import-path: (SUB-2)
import-owner: SUB-2 not-changed

with-data: NIL
connection-state: NOT-CONSUMED

% subsystem definition begins here

fuel-tank the-tank
capacity: 100.0 % pounds
empty weight: 50.0

fuel level: 100.0
flow rate: 0.0 % pounds/sec
pump off
last time: 0

fuel density: 1.0

throttle the-throttle
sax flow rate: 0.2 % pounds/sec

jet engine the-engine

thrust factor: 1000.0
max flow rate: 0.15 % pounds/sec
mode: off

switch engine-start
delay: 0

is debounced
manufacturer: "Riddler"

position: off

switch fuel-pump-start
delay: 0

is debounced
manufacturer: "Riddler"
position: off

subsystem sub-i is

124

controls: engine-start, fuel-pump-start

exports: aUTI SIGNAL BOOLEAN NIL ENGINE-START

export-path: (SUB- 1)

export-owner: SUB-1

OUT1 SIGNAL BOOLEAN NIL FUEL-PUMP-START

export-path: (SUB-1)
export-owner: SUB-1

update procedure:
update engine-start
update fuel-pump-start

subsystem sub-2 is

controls: the-tank, the-throttle, the-engine

imports: START SIGNAL BOOLEAN NIL the-tank
()

import-path: (SUB-2)
import-owner: SUB-2 not-changed

START SIGNAL BOOLEAN NIL the-engine
()

import-path: (SUB-2)
import-owner: SUB-2 not-changed

THROTTLE-INDEX PERCENT REAL 0.25 the-throttle
()

import-path: (SUB-2)

import-owner: SUB-2 not-changed

CONSUMPTION-RATE FLOW-RATE REAL 0.0 the-tank
(FUEL-FLOW-RATE SUB-2 the-engine)

import-path: (SUB-2)
import-owner: SUB-2 not-changed

FUEL-AVAILABLE? SIGNAL BOOLEAN NIL the-throttle
(FUEL-AVAILABLE? SUB-2 the-tank)

import-path: (SUB-2)
import-owner: SUB-2 not-changed

INFLOW-RATE FLOW-RATE REAL 0.0 the-engine
(REQUESTED-FLOW-RATE SUB-2 the-throttle)

import-path: (SUB-2)
import-owner: SUB-2 not-changed

SIM-TIME TIME INTEGER 0 the-tank
()
import-path: (SUB-2)

import-owner: SUB-2 not-changed

SIX-TINE TINE INTEGER 0 the-throttle

125

()

import-path: (SUB-2)
import-owner: SUB-2 not-changed

SIN-TIME TINE INTEGER 0 the-engine
()

import-path: (SUB-2)
import-owner: SUB-2 not-changed

exports: FUEL-AVAILABLE? SIGNAL BOOLEAN NIL the-tank

export-path: (SUB-2)
export-owner: SUB-2

FUEL-TANK-VEIGHT FORCE REAL 150.0 the-tank
export-path: (SUB-2)
export-owner: SUB-2

REQUESTED-FLOW-RATE FLOW-RATE REAL 0.0 the-throttle
export-path: (SUB-2)
export-owner: SUB-2

THRUST FORCE REAL 0.0 the-engine

export-path: (SUB-2)
export-owner: SUB-2

FUEL-FLOW-RATE FLOW-RATE REAL 0.0 the-engine
export-path: (SUB-2)
export-owner: SUB-2

update procedure:

update the-tank
update the-throttle
update the-engine

% application executive definition begins here
time-driven-clock global-timer

is-at-time: 0

time-driven-sequential--event-manager event-handler
manages: start-event eventl

ev-time: 0
for-primitive: event-handler
through-subsystems: app-exec
priority: 100
start-time: 0,

% put application events here

update-event event2
ev-time: 1
for-primitive: the-tank
through-subsystems: sub-2
priority: 1,

update-event event3

126

ev-tine: 1
for-primitive: the-throttle
through-subsystems: sub-2
priority: 1,

update-event event4
ev-time: 1
for-primitive: the-engine
through-subsystems: sub-2
priority: 1,

set-state-event event5
ev-time: 3
for-primitive: engine-start

attr-values: (position, on)
through-subsystems: sub-1
priority: 1,

set-state-event event6
ev-time: 3
for-primitive: fuel-pump-start
attr-values: (position, on)
through-subsystems: sub-1
priority: 1,

stop-event event3
ev-time: 9
for-primitive: event-handler
through-subsystems: app-exec
priority: 100
stop-time: 9

connect ion-manager conn-mgr
manages: connection con-0

subsystem app-exec is

controls: global-timer, event-handler, conn-mgr

imports: SIMULATION-TIME TIME INTEGER 0 EVENT-HANDLER
(CURRENT-TINE APP-EXEC GLOBAL-TIMER)
import-path: (APP-EXEC EVENT-HANDLER)
import-owner: APP-EXEC is-changed

NEW-EVENT AN-EVENT SET-EVENT-OBJ 0 EVENT-HANDLER
(NEW-EVENT APP-EXEC COIN-MGR,

NEW-EVENT APP-EXEC GLOBAL-TIMER)
import-path: (APP-EXEC EVENT-HANDLER)
import-owner: APP-EXEC is-changed

NEW-TINE TIME INTEGER 0 GLOBAL-TINER
(SIMULATION-TINE APP-EXEC EVENT-HANDLER)
import-path: (APP-EXEC GLOBAL-TIMER)
import-owner: APP-EXEC is-changed

CURR-EVENT AN-EVENT EVENT-0BJ 0 CONN-MGR

127

(CURR-EVENT •PP-EXEC EVENT-HANDLER)
import-path: (APP-EXEC CONN-NGR)
import-owner: APP-EXEC is-changed

exports: SIMULATION-TINE TIME INTEGER 0 EVENT-HANDLER
export-path: (APP-EXEC EVENT-HANDLER)
export-owner: APP-EXEC

CURA-EVENT AN-EVENT EVENT-OBJ 0 EVENT-HANDLER
export-path: (APP-EXEC EVENT-HANDLER)
export-owner: APP-EXEC

CURRENT-TINE TIME INTEGER 0 GLOBAL-TIMER
export-path: (APP-EXEC GLOBAL-TINER)
export-owner: APP-EXEC

NEW-EVENT AN-EVENT SET-EVENT-OBJ 0 CONN-MGR
export-path: (APP-EXEC CONN-MGR)
export-owner: APP-EXEC

NEW-EVENT Al-EVENT SET-EVENT-OBJ 0 GLOBAL-TIMER
export-path: (APP-EXEC GLOBAL-TINER)
export-owner: APP-EXEC

update procedure:
update global-timer
update event-handler
update conn-agr

application test-me is
controls: app-exec, sub-i, sub-2
update procedure:

update app-exec
update sub-1
update sub-2

Here are the results of a test using this application:

(* This is the application state prior to execution *)
.> (mcn 'td-test)
application definition TD-TEST

execution-mode: TIME-DRIVEN-SEQUENTIAL
connected-by

connection CON-O
links:

CURRENT-TIME TIME INTEGER 0 GLOBAL-TIMER
export-path: (APP-EXEC GLOBAL-TIMER) export-owner:

APP-EXEC
to-imp:
SIN-TIME TIME INTEGER 0 THE-TANK

() import-path: (SUB-2) import-owner: SUB-2 not-changed
with-data: NIL connection-state: NOT-CONSUMED

connection CON-1
links:

CURRENT-TINE TIME INTEGER 0 GLOBAL-TIMER
export-path: (APP-EXEC GLOBAL-TIMER) export-owner:

128

APP-EXEC
to-imp:
SIN-TIME TIME INTEGER 0 THE-THROTTLE

() import-path: (SUB-2) import-owner: SUB-2 not-changed
with-data: NIL connection-state: NOT-CONSUMED

connection CON-2
links:

CURREIT-TIME TIME INTEGER 0 GLOBAL-TIMER

export-path: (APP-EXEC GLOBAL-TIMER) export-owner:
APP-EXEC

to-imp:
SIN-TIME TIME INTEGER 0 THE-ENGINE

() import-path: (SUB-2) import-owner: SUB-2 not-changed
with-data: NIL connection-state: NOT-CONSUMED

connection CON- 3
links:

OUTI SIGNAL BOOLEAN NIL ENGINE-START
export-path: (SUB-1) export-owner: SUB-1

to-imp:
START SIGNAL BOOLEAN NIL THE-ENGINE

() import-path: (SUB-2) import-owner: SUB-2 not-changed
with-data: NIL connection-state: NOT-CONSUMED

connection CON-4
links:

OUT1 SIGNAL BOOLEAN NIL FUEL-PUMP-START

export-path: (SUB-1) export-owner: SUB-1
to-imp:

START SIGNAL BOOLEAN NIL THE-TANK

() import-path: (SUB-2) import-owner: SUB-2 not-changed
with-data: NIL connection-state: NOT-CONSUMED

THE-TANK THE-THROTTLE THE-ENGINE ENGINE-START
FUEL-PUMP-START SUB-1 SUB-2 GLOBAL-TIMER EVENT-HANDLER
CONN-NGR APP-EXEC TEST-ME

.> (ar 16)
(e Once again, the faultly semantic chaecks fail e)

ERROR -- "No subsystem produces data of category PERCENT for object THE-THROTTLE"
Object: subsystem SUB-2 is controls:

THE-TANK, THE-THROTTLE, THE-ENGINE
imports:

START SIGNAL BOOLEAN NIL THE-TANK

() import-path: (SUB-2) import-owner: SUB-2 not-changed
START SIGNAL BOOLEAN NIL THE-ENGINE

() import-path: (SUB-2) import-owner: SUB-2 not-changed
THROTTLE-INDEX PERCENT REAL 0.25 THE-THROTTLE

() import-path: (SUB-2) import-owner: SUB-2 not-changed
CONSUMPTION-RATE FLOW-RATE REAL 0.0 THE-TANK

C FUEL-FLOW-RATE SUB-2 THE-ENGINE
) import-path: (SUB-2) import-owner: SUB-2 not-changed

FUEL-AVAILABLE? SIGNAL BOOLEAN NIL THE-THROTTLE
C FUEL-AVAILABLE? SUB-2 THE-TANK
) import-path: (SUB-2) import-owner: SUB-2 not-changed

INFLOW-RATE FLOW-RATE REAL 0.0 THE-ENGINE
C REQUESTED-FLOW-RATE SUB-2 THE-THROTTLE
) import-path: (SUB-2) import-owner: SUB-2 not-changed

SIN-TIME TIME INTEGER 0 THE-TANK
C) import-path: (SUB-2) import-owner: SUB-2 not-changed

129

SIN-TINE TIME INTEGER 0 THE-THROTTLE

() import-path: (SUB-2) import-owner: SUB-2 not-changed
SIN-TIME TIME INTEGER 0 THE-ENGINE

() import-path: (SUB-2) import-owner: SUB-2 not-changed

exports:
FUEL-AVAILABLE? SIGNAL BOOLEAN NIL THE-TANK

export-path: (SUB-2) export-owner: SUB-2
FUEL-TANK-WEIGHT FORCE REAL 150.0 THE-TANK

export-path: (SUB-2) export-owner: SUB-2
REQUESTED-FLOW-RATE FLOW-RATE REAL 0.0 THE-THROTTLE

export-path: (SUB-2) export-owner: SUB-2
THRUST FORCE REAL 0.0 THE-ENGINE

export-path: (SUB-2) export-ovner: SUB-2
FUEL-FLOW-RATE FLOW-RATE REAL 0.0 THE-ENGINE

export-path: (SUB-2) export-owner: SUB-2

initialize procedure: update procedure:
update THE-TANK update THE-THROTTLE update THE-ENGINE

Rule successfully applied.
application definition TD-TEST

execution-mode: TIME-DRIVEN-SEQUENTIAL

connected-by
connection CON-0

links:
CURRENT-TINE TIME INTEGER 0 GLOBAL-TIMER

export-path: (APP-EXEC GLOBAL-TIMER) export-owner:
APP-EXEC

to-imp:

SIN-TIME TIME INTEGER 0 THE-TANK
() import-path: (SUB-2) import-owner: SUB-2 not-changed

with-data: NIL connection-state: NOT-CONSUMED
connection CON-1

links:
CURRENT-TIME TIME INTEGER 0 GLOBAL-TIMER

export-path: (APP-EXEC GLOBAL-TIMER) export-owner:
APP-EIEC

to-imp:
SIN-TIME TIME INTEGER 0 THE-THROTTLE

() import-path: (SUB-2) import-owner: SUB-2 not-changed
with-data: NIL connection-state: NOT-CONSUMED

connection CON-2
links:

CURRENT-TMIME TIME INTEGER 0 GLOBAL-TIMER

export-path: (APP-EXEC GLOBAL-TIMER) export-owner:
APP-EXEC

to-imp:

SIN-TIME TIME INTEGER 0 THE-ENGINE
() import-path: (SUB-2) import-owner: SUB-2 not-changed

with-data: NIL connection-state: NOT-CONSUMED

connection CON-3
links:

OUTI SIGNAL BOOLEAN NIL ENGINE-START
export-path: (SUB-1) export-owner: SUB-1

to-imp:
START SIGNAL BOOLEAN NIL THE-ENGINE

() import-path: (SUB-2) import-owner: SUB-2 not-changed

130

with-data: NIL connection-state: NOT-CONSUMED
connection CON-4

links:
OUTI SIGNAL BOOLEAN NIL FUEL-PUMP-START

export-path: (SUB-1) export-owner: SUB-1
to-imp:
START SIGNAL BOOLEAN NIL THE-TANK

() import-path: (SUB-2) import-owner: SUB-2 not-changed
with-data: NIL connection-state: NOT-CONSUMED

THE-TANK TIE-THROTTLE THE-ENGINE ENGINE-START
FUEL-PUMP-START SUB-1 SUB-2 GLOBAL-TIMER EVENT-HANDLER
CONN-KGR APP-EXEC TEST-HE

. C(ar 16)
Rule failed to apply.
.> (ar 17)
Rule successfully applied.
application definition TD-TEST

execution-mode: TIME-DRIVEN-SEQUENTIAL
connected-by

connection CON-O
links:

CURRENT-TIME TIME INTEGER 0 GLOBAL-TIMER
export-path: (APP-EXEC GLOBAL-TIMER) export-owner:

APP-EXEC
to-imp:
SIN-TIME TIME INTEGER 0 THE-TANK

() import-path: (SUB-2) import-owner: SUB-2 not-changed
with-data: NIL connection-state: NOT-CONSUMED

connection CON-1
links:

CURRENT-TIME TIME INTEGER 0 GLOBAL-TIMER
export-path: (APP-EXEC GLOBAL-TIMER) export-owner:

APP-EXEC
to-imp:
SIN-TIME TIME INTEGER 0 THE-THROTTLE

() import-path: (SUB-2) import-owner: SUB-2 not-changed
with-data: NIL connection-state: NOT-CONSUMED

connection CON-2
links:

CURRENT-TIME TIME INTEGER 0 GLOBAL-TIMER
export-path: (APP-EXEC GLOBAL-TIMER) export-owner:

APP-EIEC
to-imp:
SIN-TIME TIME INTEGER 0 THE-ENGINE

() import-path: (SUB-2) import-owner: SUB-2 not-changed
with-data: NIL connection-state: NOT-CONSUMED

connection CON-3
links:

OUTi SIGNAL BOOLEAN NIL ENGINE-START
export-path: (SUB-1) export-owner: SUB-1

to-imp:
START SIGNAL BOOLEAN NIL THE-ENGINE

() import-path: (SUB-2) import-owner: SUB-2 not-changed
with-data: NIL connection-state: NOT-CONSUMED

connection CON-4
links:

131

OUTI SIGNAL BOOLEAN NIL FUEL-PUMP-START
export-path: (SUB-i) export-owner: SUB-1

to-imp:
START SIGNAL BOOLEAN NIL THE-TANK

() import-path: (SUB-2) import-owner: SUB-2 not-changed
with-data: NIL connection-state: NOT-CONSUMED

THE-TANK THE-THROTTLE THE-ENGINE ENGINE-START

FUEL-PUMP-START SUB-1 SUB-2 GLOBAL-TIMER EVENT-HANDLER

CONN-NGR APP-EXEC TEST-ME
.> (ar 15)
The current simulation time is 0
The current simulation time is 1
The current simulation time is 2

The current simulation time is 3
The current simulation time is 4

scavenging.., done
A fuel-flow sequencing error has occurred (e At time 4, when the engine and e)

The current simulation time is 5 (s fuel tank update, they see that e)
The current simulation time is 6 (a the switches have been turned on e)
The current simulation time is 7 (a at the same time e)
The current simulation time is 8
The current simulation time is 9

Execution Stopped
Rule successfully applied.

(* This is the state following execution a)

application definition TD-TEST
execution-mode: TIME-DRIVEN-SEQUENTIAL

connected-by
connection CON-0

links:
CURRENT-TIME TIME INTEGER 9 GLOBAL-TIMER

export-path: (APP-EXEC GLOBAL-TIMER) export-owner:
APP-EIEC

to-imp:

SIN-TIME TIME INTEGER 8 THE-TANK
() import-path: (SUB-2) import-owner: SUB-2 is-changed

with-data: 8 connection-state: CONSUMED
connection CON-1

links:
CURRENT-TIME TIME INTEGER 9 GLOBAL-TIMER

export-path: (APP-EIEC GLOBAL-TIMER) export-owner:
APP-EIEC

to-imp:
SIN-TINE TIME INTEGER 8 THE-THROTTLE

() import-path: (SUB-2) import-owner: SUB-2 is-changed
with-data: 8 connection-state: CONSUMED

connection COI-2

links:
CURRENT-TINE TINE INTEGER 9 GLOBkL-TIMER

export-path: (APP-EXEC GLOBAL-TIMER) export-owner:

APP-EXEC
to-imp:

SIN-TIME TIME INTEGER 8 THE-ENGINE
C) import-path: (SUB-2) import-owner: SUB-2 is-changed

132

with-data: 8 connection-state: CONSUMED
connection CON-3

links:
OUTI SIGNAL BOOLEAN T ENGINE-START

export-path: (SUB-I) export-owner: SUB-1
to-imp:
START SIGNAL BOOLEAN T THE-ENGINE

() import-path: (SUB-2) import-owner: SUB-2 is-changed
with-data: T connection-state: CONSUMED

connection CON-4
links:

OUTI SIGNAL BOOLEAN T FUEL-PUMP-START

export-path: (SUB-i) export-owner: SUB-I

to-imp:
START SIGNAL BOOLEAN T THE-TANK

() import-path: (SUB-2) import-owner: SUB-2 is-changed
with-data: T connection-state: CONSUMED

THE-TANK THE-THROTTLE THE-ENGINE ENGINE-START
FUEL-PUMP-START SUB-I SUB-2 GLOBAL-TIMER EVENT-HAIDLER

COIN-MGR APP-EZEC TEST-ME

(e This is the Old-Events List e)

.> (ar 18)
start-event EVENTI ev-time: 0 for-primitive: EVENT-HANDLER

through-subsystems: APP-EXEC priority: 100 start-time: 0

transmit-event CLOCK-UPDATE ev-time: 0 from-primitive:

GLOBAL-TIMER in-subsystem: APP-EXEC from-export:
CURRENT-TIME priority: 50

receive-event RX-2 ev-time: 0 for-primitive: THE-ENGINE
through-subsystems: SUB-2 to-import SIX-TIME priority: 10

receive-event RX-2 ev-time: 0 for-primitive: THE-THROTTLE
through-subsystems: SUB-2 to-import SIX-TIME priority: 10

receive-event RX-2 ev-time: 0 for-primitive: THE-TANK
through-subsystems: SUB-2 to-import SIN-TIME priority: 10

transmit-event CLOCK-UPDATE ev-time: 1 from-primitive:
GLOBAL-TIMER in-subsystem: APP-EXEC from-export:

CURRENT-TIME priority: 50

receive-event RX-2 ev-time: 1 for-primitive: THE-ENGINE
through-subsystems: SUB-2 to-import SIN-TIME priority: 10

receive-event RX-2 ev-time: 1 for-primitive: THE-THROTTLE

through-subsystems: SUB-2 to-import SIN-TIME priority: 10

receive-event RX-2 ev-time: 1 for-primitive: THE-TANK
through-subsystems: SUB-2 to-import SIN-TIME priority: 10

scavenging.., done
update-event EVENT2 ev-tine: 1 for-primitive: THE-TANK

through-subsystems: SUB-2 priority: I

133

transmit-event *UNDEFISED. ev-time: 1 fron-primitive:
THE-TANK in-subsystem: SUB-2 from-export: FUEL-TANK-VEIGHT
priority: 50

update-event EVENT3 ev-time: 1 for-primitive: THE-THROTTLE
through-subsystems: SUB-2 priority: 1

transmit-event *UNDEFIE.D. ev-t iJe: 1 from-primitive:
THE-THROTTLE in-subsystem: SUB-2 from-export:
REQUESTED-FLOW-RATE priority: 50

update-event EVENT4 ev-time: 1 for-primitive: THE-ENGINE
through-subsystems: SUB-2 priority: 1

transmit-event *UNDEFINED* ev-time: 1 from-primitive:

THE-ENGINE in-subsystem: SUB-2 from-export: THRUST

priority: 50

transmit-event CLOCK-UPDATE ev-time: 2 from-primitive:
GLOBAL-TIMER in-subsystem: APP-EXEC from-export:

CURRENT-TIME priority: 50

receive-event RX-2 ev-time: 2 for-primitive: THE-ENGINE
through-subsystems: SUB-2 to-import SIN-TIME priority: 10

receive-event RX-2 ev-time: 2 for-primitive: THE-THROTTLE
through-subsystems: SUB-2 to-import SIN-TIME priority: 10

receive-event RX-2 ev-time: 2 for-primitive: THE-TANK
through-subsystems: SUB-2 to-import SIN-TIME priority: 10

update-event EVENT2 ev-time: 2 for-primitive: THE-TANK
through-subsystems: SUB-2 priority: 1

transmit-event *UNDEFINED* ev-time: 2 from-primitive:
THE-TANK in-subsystem: SUB-2 from-export: FUEL-TANK-WEIGHT

priority: 50

update-event EVENT3 ev-time: 2 for-primitive: THE-THROTTLE
through-subsystems: SUB-2 priority: I

transmit-event *UNDEFINED* ev-time: 2 from-primitive:
THE-THROTTLE in-subsystem: SUB-2 from-export:
REQUESTED-FLOW-RATE priority: 50

update-event EVENT4 ev-time: 2 for-primitive: THE-ENGINE
through-subsystems: SUB-2 priority: i

transmit-event *UNDEFINED* ev-time: 2 from-primitive:
THE-ENGINE in-subsystes: SUB-2 from-export: THRUST
priority: 50

transmit-event CLOCK-UPDATE ev-time: 3 from-primitive:
GLOBAL-TIMER in-subsystem: APP-EXEC from-export:
CURRENT-TIME priority: 50

134

receive-event R1-2 ev-time: 3 for-primitive: THE-ENGINE
through-subsystems: SUB-2 to-import SIl-TIAE priority: 10

receive-event R1-2 ev-tijae: 3 for-primitive: THE-THROTTLE
through-subsystems: SUB-2 to-import SIN-TINE priority: 10

receive-event R1-2 ev-time: 3 for-primitive: THE-TANK

through-subsystems: SUB-2 to-import SIN-TIME priority: 10

set-state-event EVENT5 ey-time: 3 for-primitive:
ENGINE-START attr-values: (POSITION, ON)
through-subsystems: SUB-1 priority: 1

transmit-event *UNDEFINED* ev-time: 3 from-primitive:
ENGINE-START in-subsystem: SUB-1 from-export: OUTI

priority: 50

receive-event RX-2 ev-time: 3 for-primitive: THE-ENGINE
through-subsystems: SUB-2 to-import START priority: 10

set-state-event EVEJT6 ev-time: 3 for-primitive:
FUEL-PUMP-START attr-values: (POSITION, ON)

through-subsystems: SUB-i priority: 1

transmit-event OUNDEFINED* ev-time: 3 from-primitive:
FUEL-PUMP-START in-subsystem: SUB-1 from-export: OUTI

priority: 50

receive-event RX-2 ev-time: 3 for-primitive: THE-TANK
through-subsystems: SUB-2 to-import START priority: 10

transmit-event CLOCK-UPDATE ev-time: 4 from-primitive:
GLOBAL-TIMER in-subsystem: APP-EXEC from-export:
CURRENT-TINE priority: 50

receive-event 11-2 ev-time: 4 for-primitive: THE-ENGINE
through-subsystems: SUB-2 to-import SIN-TIME priority: 10

receive-event RX-2 ev-time: 4 for-primitive: THE-THROTTLE
through-subsystems: SUB-2 to-import SIN-TIME priority: 10

receive-event RX-2 ev-time: 4 for-priaitive: THE-TANK
through-subsystems: SUB-2 to-import SIN-TIME priority: 10

update-event EVENT2 ev-time: 4 for-primitive: THE-TANK

through-subsystems: SUB-2 priority: 1

transmit-event *UNDEFINED* ev-time: 4 from-primitive:
THE-TANK in-subsystem: SUB-2 from-export: FUEL-TANK-WEIGHT
priority: 50

update-event EVENT3 ev-tize: 4 for-primitive: THE-THROTTLE
through-subsystems: SUB-2 priority: 1

transmit-event *UNDEFINED* ev-time: 4 from-primitive:

135

THE-THROTTLE in-subsystem: SUB-2 from-export:
REQUESTED-FLOW-RATE priority: 50

update-event EVENT4 ev-time: 4 for-primitive: THE-ENGINE
through-subsystems: SUB-2 priority: 1

transmit-event *UNDEFINED* ev-time: 4 from-prinitive:
THE-ENGINE in-subsysten: SUB-2 from-export: THRUST
priority: 50

transmit-event CLOCK-UPDATE ev-time: 5 from-primitive:
GLOBAL-TIlER in-subsystem: APP-EXEC from-export:
CURRENT-TINE priority: 50

receive-event RX-2 ev-time: 5 for-primitive: THE-ENGINE
through-subsystems: SUB-2 to-import SIN-TINE priority: 10

receive-event RX-2 ev-time: 5 for-primitive: THE-THROTTLE
through-subsystems: SUB-2 to-import SIN-TIME priority: 10

receive-event RZ-2 ev-time: 5 for-primitive: THE-TANK
through-subsystems: SUB-2 to-import SIN-TINE priority: 10

update-event EVENT2 ev-time: 5 for-primitive: THE-TANK
through-subsystems: SUB-2 priority: 1

transmit-event *UNDEFINED* ev-time: 5 from-primitive:

THE-TANK in-subsystem: SUB-2 fron-export: FUEL-TANK-WEIGHT

priority: 50

update-event EVENT3 ev-time: 5 for-primitive: THE-THROTTLE
through-subsystems: SUB-2 priority: I

transmit-event *UNDEFINED* ev-time: 5 from-primitive:
THE-THROTTLE in-subsystem: SUB-2 from-export:
REQUESTED-FLO-RkATE priority: 50

update-event EVENT4 ev-time: 5 for-primitive: THE-ENGINE
through-subsystems: SUB-2 priority: I

transmit-event *UNDEFINED* ev-time: 5 from-primitive:
THE-ENGINE in-subsystem: SUB-2 from-export: THRUST
priority: 50

transmit-event CLOCK-UPDATE ev-time: 6 from-primitive:
GLOBAL-TIMER in-subsystem: APP-EXEC from-export:
CURRENT-TINE priority: 50

receive-event RX-2 ev-time: 6 for-prinitive: THE-ENGINE
through-subsystems: SUB-2 to-import SIN-TINE priority: 10

receive-event RX-2 ev-time: 6 for-prinitive: THE-THROTTLE
through-subsystems: SUB-2 to-import SIN-TIME priority: 10

receive-event RX-2 ev-time: 6 for-primitive: THE-TANK
through-subsystems: SUB-2 to-import SIN-TIME priority: 10

136

update-event EVENT2 ev-time: 6 for-primitive: THE-TANK
through-subsystems: SUB-2 priority: I

transmit-event *UNDEFINED* ev-time: 6 fron-primitive:
THE-TANK in-subsystem: SUB-2 fron-export: FUEL-TAINK-WEIGHT

priority: 50

update-event EVEUT3 ev-time: 6 for-primitive: THE-THROTTLE
through-subsystems: SUB-2 priority: I

transmit-event *UNDEFINED* ev-time: 6 from-primitive:
THE-THROTTLE in-subsystem: SUB-2 from-export:
REQUESTED-FLOW-RATE priority: 50

update-event EVENT4 ev-time: 6 for-primitive: THE-ENGINE
through-subsystems: SUB-2 priority: 1

transmit-event *UNDEFINED* ev-time: 6 from-primitive:
THE-ENGINE in-subsystem: SUB-2 from-export: THRUST
priority: 50

transmit-event CLOCK-UPDATE ev-time: 7 from-primitive:
GLOBAL-TIMER in-subsystem: APP-EXEC from-export:
CURRENT-TIME priority: 50

receive-event RX-2 ev-time: 7 for-primitive: THE-ENGINE
through-subsystems: SUB-2 to-import SIN-TINE priority: 10

receive-event RX-2 ev-time: 7 for-primitive: THE-THROTTLE
through-subsystems: SUB-2 to-import SIN-TIME priority: 10

receive-event RX-2 ev-time: 7 for-primitive: THE-TANK
through-subsystems: SUB-2 to-import SIN-TIME priority: 10

update-event EVENT2 ev-time: 7 for-primitive: THE-TANK
through-subsystems: SUB-2 priority: I

transmit-event *UNDEFINED* ev-time: 7 from-primitive:
THE-TANK in-subsystem: SUB-2 from-export: FUEL-TANK-WEIGHT
priority: 50

update-event EVENT3 ev-time: 7 for-primitive: THE-THROTTLE
through-subsystems: SUB-2 priority: 1

transmit-event *UNDEFINED* ev-time: 7 from-primitive:
THE-THROTTLE in-subsystem: SUB-2 from-export:
REQUESTED-FLOW-RATE priority: 50

update-event EVENT4 ev-time: 7 for-primitive: THE-ENGINE
through-subsystems: SUB-2 priority: 1

transmit-event *UNDEFINED* ev-time: 7 from-primitive:
THE-ENGINE in-subsystem: SUB-2 from-export: THRUST

priority: 60

137

transmit-event CLOCK-UPDATE ev-time: 8 fron-prinitive:
GLOBAL-TINER in-subsystem: APP-EIEC from-export:
CURRENT-TINE priority: 50

receive-event RX-2 ev-time: 8 for-primitive: THE-ENGINE
through-subsystems: SUB-2 to-import SIN-TINE priority: 10

receive-event RX-2 ev-time: 8 for-primitive: THE-THROTTLE
through-subsystems: SUB-2 to-import SIN-TINE priority: 10

receive-event RX-2 ev-time: 8 for-primitive: THE-TANK
through-subsystems: SUB-2 to-import SIN-TIME priority: 10

update-event EVENT2 ev-time: 8 for-primitive: THE-TANK
through-subsystems: SUB-2 priority: 1

transmit-event *UNDEFINED* ev-time: 8 from-primitive:
THE-TANK in-subsystem: SUB-2 from-export: FUEL-TANK-WEIGHT
priority: 50

update-event EVENT3 ev-time: 8 for-primitive: THE-THROTTLE

through-subsystems: SUB-2 priority: 1

transmit-event *UNDEFINED* ev-time: 8 from-primitive:

THE-THROTTLE in-subsystem: SUB-2 from-export:
REQUESTED-FLOW-RATE priority: 50

update-event EVENT4 ev-time: 8 for-primitive: THE-ENGINE

through-subsystems: SUB-2 priority: 1

transmit-event *UNDEFINED* ev-time: 8 from-primitive:
THE-ENGINE in-subsystem: SUB-2 from-export: THRUST

priority: 50

stop-event EVENT3 ev-time: 9 for-primitive: EVENT-HANDLER
through-subsystems: APP-EXEC priority: 100 stop-time: 9

Rule successfully applied.
application definition TD-TEST

execution-mode: TINE-DRIVEN-SEQUENTIAL
connected-by

connection CON-0
links:

CURRENT-TINE TINE INTEGER 9 GLOBAL-TIMER
export-path: (APP-EXEC GLOBAL-TIMER) export-owner:

APP-EXEC
to-imp:
SIX-TIME TIME INTEGER 8 THE-TANK

() import-path: (SUB-2) import-owner: SUB-2 is-changed
with-data: 8 connection-state: CONSUMED

connection CON-1
links:

CURRENT-TIME TIME INTEGER 9 GLOBAL-TIMER
export-path: (APP-EXEC GLOBAL-TIMER) export-owner:

APP-EXEC
to-imp:

138

SIX-TIME TIME INTEGER 8 THE-THROTTLE
() import-path: (SUB-2) import-owner: SUB-2 is-changed

with-data: 8 connection-state: CONSUMED
connection CON-2

links:
CURRENT-TIME TIME INTEGER 9 GLOBAL-TIMER

export-path: (APP-EXEC GLOBAL-TIMER) export-owner:
APP -EXEC

to-imp:
SIN-TIME TIME INTEGER 8 THE-ENGINE

() import-path: (SUB-2) import-owner: SUB-2 is-changed
with-data: 8 connection-state: CONSUMED

connection CON-3

links:
OUTi SIGNAL BOOLEAN T ENGINE-START

export-path: (SUB-i) export-owner: SUB-I
to-imp:
START SIGNAL BOOLEAN T THE-ENGINE

() import-path: (SUB-2) import-owner: SUB-2 is-changed
with-data: T connection-state: CONSUMED

connection CON-4
links:

OUT1 SIGNAL BOOLEAN T FUEL-PUMP-START
export-path: (SUB-1) export-owner: SUB-1

to-imp:
START SIGNAL BOOLEAN T THE-TANK

() import-path: (SUB-2) import-owner: SUB-2 is-changed
with-data: T connection-state: CONSUMED

THE-TANK THE-THROTTLE THE-ENGINE ENGINE-START
FUEL-PUMP-START SUB-1 SUB-2 GLOBAL-TIMER EVENT-HANDLER
CONN-MGR APP-EXEC TEST-ME

.> (pn 'sub-1)
subsystem SUB-i is controls: ENGINE-START, FUEL-PUMP-START

imports:
exports:

OUT1 SIGNAL BOOLEAN T ENGINE-START
export-path: (SUB-1) export-owner: SUB-i
OUT1 SIGNAL BOOLEAN T FUEL-PUMP-START

export-path: (SUB-1) export-owner: SUB-1
initialize procedure: update procedure:
update ENGINE-START update FUEL-PUMP-START

.> (pn 'sub-2)

subsystem SUB-2 is controls:
THE-TANK, THE-THROTTLE, THE-ENGINE
imports:

START SIGNAL BOOLEAN T THE-TANK
() import-path: (SUB-2) import-owner: SUB-2 is-changed
START SIGNAL BOOLEAN T THE-ENGINE

() import-path: (SUB-2) import-ovner: SUB-2 is-changed
THROTTLE-INDEX PERCENT REAL 0.25 THE-THROTTLE

() import-path: (SUB-2) import-owner: SUB-2 not-changed
CONSUMPTION-RATE FLOW-RATE REAL 0.05 THE-TANK

C FUEL-FLOW-RATE SUB-2 THE-ENGINE
) import-path: (SUB-2) import-owner: SUB-2 is-changed

FUEL-AVAILABLE? SIGNAL BOOLEAN T THE-THROTTLE

139

(FUEL-AVAILABLE? SUB-2 THE-TANK
) import-path: (SUB-2) import-owner: SUB-2 is-changed

INFLOW-RATE FLOW-RATE REAL 0.05 THE-ENGINE
(REQUESTED-FLOW-RATE SUB-2 THE-THROTTLE
) import-path: (SUB-2) import-owner: SUB-2 is-changed

SIN-TIM TIME INTEGER 8 THE-TANK
() import-path: (SUB-2) import-owner: SUB-2 is-changed

SIN-TINE TIME INTEGER 8 THE-THROTTLE
() import-path: (SUB-2) import-owner: SUB-2 is-changed

SIN-TINE TIME INTEGER 8 THE-ENGINE
() import-path: (SUB-2) import-owner: SUB-2 is-changed

exports:
FUEL-AVAILABLE? SIGNAL BOOLEAN T THE-TANK

export-path: (SUB-2) export-owner: SUB-2
FUEL-TANK-WEIGHT FORCE REAL 149.84999 THE-TANK

export-path: (SUB-2) export-owner: SUB-2

REQUESTED-FLOW-RATE FLOW-RATE REAL 0.05 THE-THROTTLE
export-path: (SUB-2) export-owner: SUB-2

THRUST FORCE REAL 50.0 THE-ENGINE
export-path: (SUB-2) export-owner: SUB-2

FUEL-FLOW-RATE FLOW-RATE REAL 0.05 THE-ENGINE
export-path: (SUB-2) export-owner: SUB-2

initialize procedure: update procedure:
update THE-TANK update THE-THROTTLE update THE-ENGINE

B.4 Conclusion

The tests all caused the predicted behavior to occur. They do not represent an

all-encompassing set of possible applications, but they are sufficient to demonstrate that

the executive correctly services all events. The sample tests and results contained herein

show how the kinds of results obtained from the testing of the application executive. More

details on application testing are contained in Waggoner's thesis (24).

140

Appendizx C. Application Executive Instances

C. 1 Introduction

Architect's application executive is a subsystem which controls primitives which were

discovered during domain analysis. This appendix presents two executive subsystems ex-

pressed in the OCU architecture specific language (ASL).

C.2 Event-Driven Sequential Executive Subsystem

X filename: ed-seq-exec
% author Bob Welgan
% date : 30 Sep 93

% This file, written in OCU language, is designed to be parsed into
% the Refine object base. It defines the event-driven sequential application
% executive subsystem.

event-driven-clock global-timer
is-at-time: 0

event -driven-sequential-event-manager event-handler
manages: start-event eventi

ev-time: 0
for-primitive: event-handler
through-subsystems: app-exec
priority: 100
start-time: 1,

stop-event event2
ev-time: 50
for-primitive: event-handler
through-subsystems: app-exec
priority: 100
stop-time: 50

connection-manager conn-mgr
manages: connection con-0

subsystem app-exec is

controls: global-timer, event-handler, conn-mgr

imports: SIMULATION-TIME TINE INTEGER 0 EVENT-HANDLER
(CURRENT-TIME APP-EXEC GLOBAL-TIMER)
import-path: (APP-EXEC)
import-owner: APP-EXEC is-changed

NEW-EVENT AN-EVENT SET-EVENT-OBJ 0 EVENT-HANDLER
(NEW-EVENT APP-EXEC CONN-MGR)
import-path: (APP-EXEC)

141

import-ovner: APP-EXEC is-changed

NEV-TIME TIME INTEGER 0 GLOBAL-TIMER
(SIMULATION-TINE APP-EXEC EVENT-HANDLER)

import-path: (APP-EXEC)

import-owner: APP-EXEC is-changed

CURR-EVENT A-EVENT EVENT-OBJ 0 CONN-NGR
(CURA-EVENT APP-EXEC EVENT-HANDLER)
import-path: (APP-EXEC)
import-ovner: APP-EXEC is-changed

exports: SIMULATION-TIME TIME INTEGER 0 EVENT-HANDLER

export-path: (APP-EXEC)
export-owner: APP-EIEC

CURR-EVENT AN-EVENT EVENT-OBJ 0 EVENT-HANDLER

export-path: (APP-EXEC)
export-owner: APP-EXEC

CURRENT-TIME TIME INTEGER 0 GLOBAL-TIMER

export-path: (APP-EXEC)
export-owner: APP-EXEC

NEW-EVENT AN-EVENT SET-EVENT-OBJ 0 CONN-NGR

export-path: (APP-EXEC)
export-owner: kPP-EXEC

update procedure:

update global-timer

update event-handler

update conn-mgr

C.3 Time-Driven Sequential Executive Subsystem

% filename: td-solo

% author : Bob Velgan
% date : 18 Oct 93

% This file, written in OCU language, is designed to be parsed into

% the Refine object base. It defines the time-driven sequential application
% executive subsystem.

time-driven-clock global-timer
is-at-time: 0

time-driven-sequential-event-manager event-handler

manages: start-event event1
ev-time: 0

for-primitive: event-handler
through-subsystems: app-exec
priority: 100

start-time: 1,

142

stop-event event2
ev-tine: 20
for-primitive: event-handler
through-subsystems: app-exec
priority: 100
stop-time: 20

connect ion-manager conn-mgr
manages: connection con-0

subsystem app-exec in

controls: global-timer, event-handler, conn-mgr

imports: SIMILATION-TINE TIME INTEGER 0 EVENT-HANDLER
(CURRENT-TIME APP-EXEC GLOBAL-TIMER)
import-path: (APP-EXEC)
import-owner: APP-EXEC is-changed

NEW-EVENT AN-EVENT SET-EVENT-OBJ 0 EVENT-HANDLER
(NEW-EVENT APP-EXEC CONN-NGR,

NEW-EVENT APP-EXEC GLOBAL-TIMER)
import-path: (APP-EXEC)
import-owner: APP-EXEC is-changed

NEW-TINE TIME INTEGER 0 GLOBAL-TIMER
(SIMULATION-TINE APP-EXEC EVENT-HANDLER)
import-path: (APP-EXEC)
import-owner: APP-EXEC is-changed

CURR-EVENT AN-EVENT EVENT-OBJ 0 CONN-MGR
(CURR-EVENT APP-EXEC EVENT-HANDLER)
import-path: (APP-EXEC)
import-owner: APP-EXEC is-changed

exports: SIMULATION-TIME TIME INTEGER 0 EVENT-HANDLER
export-path: (APP-EXEC)
export-owner: APP-EXEC

CURR-EVENT AN-EVENT EVENT-OBJ 0 EVENT-HANDLER
export-path: (APP-EXEC)
export-owner: APP-EXEC

CURRENT-TIME TIME INTEGER 0 GLOBAL-TIMER
export-path: (APP-EXEC)
export-owner: APP-EXEC

NEW-EVENT AN-EVENT SET-EVENT-OBJ 0 CONN-MGR
export-path: (APP-EXEC)
export-owner: APP-EXEC

NEW-EVENT AN-EVENT SET-EVENT-OBJ 0 GLOBAL-TIMER
export-path: (APP-EXEC GLOBAL-TIMER)
export-owner: APP-EXEC

143

update procedure:
update global-timer
update event-handler
update conn-ugr

C.4 Conclusion

These subsystems enable Architect to execute applications in time-driven and event-

driven sequential modes.

144

Bibliography

1. Abraham Silberschatz, James L. Peterson, Peter Galvin. Operating System Concepts,
3rd edition. New York, NY: Addison-Wesley Publishing Company, Inc., 1991.

2. Anderson, Cindy Griffin. Creating and Manipulating Formalized Software Architec-
tures to Support a Domain-Oriented Application and Composition System. MS the-
sis, AFIT/GCS/ENG/92D-01, School of Engineering, Air Force Institute of Technol-
ogy(AU), Wright-Patterson AFB, OH, December 1992 (AD-A258900).

3. Bailor, Maj. Paul D. "A Framework for Application Executives for OCU-Based
Software Architectures." Proposed structure of OCU Model application executive,
September 1992.

4. Ben Potter, Jane Sinclair and David Till. An Introduction to Formal Specification
and Z. Prentice Hall International (UK) Ltd., 1991.

5. Cossentine, Jay. Developing a Sophisticated User Interface to Support the Archi-
tect Domain-Oriented Application Composition and Generation Systems. MS the-
sis, AFIT/GCS/ENG/93D-04, School of Engineering, Air Force Institute of Technol-
ogy(AU), Wright-Patterson AFB, OH, December 1993.

6. D'Ippolito, Richard S. "Using Models in Software Engineering." Proceedings: TRI-
Ada '89. 256-265. New York, NY: Association of Computing Machinery, Inc., 1989.

7. Fugimoto, Richard M. "Parallel Discrete Event Simulation," Communications of the
ACM, 33(10):31-53 (October 1990).

8. Gool, Warren Evan. Alternative Architectures for Domain-Oriented Application Com-
position and Generation Systems. MS thesis, AFIT/GCS/ENG/93D-11, School of
Engineering, Air Force Institute of Technology(AU), Wright-Patterson AFB, OH, De-
cember 1993.

9. Gregory R. Andrews, Fred B. Scheider. "Concepts and Notations for Concurrent
Programming," Computing Surveys, 15(1):3-43 (March 1983).

10. Hall, Anthony. "Seven Myths of Formal Methods," IEEE Software, 11-19 (September
1990).

11. James Rumbaugh, et al. Object-Oriented Modeling and Design. Englewood Cliffs,
NJ: Prentice-Hall, Inc., 1991.

12. Lee, Kenneth J. and others. Model-Based Software Development (Draft). Technical
Report CMU/SEI-92-SR-00, Software Engineering Institute, December 1991.

13. Levi, Shem-Tov and Ashok K. Agrawala. Real-Time System Design. McGraw-Hill,
1990.

14 . owry, M.R. Software Engineering in the Twenty-first Century, chapter 24, 600-680.
MIT Press, 1991.

15. Paul D. Bailor, others. "Summary of J-MASS Research." Formal Methods Research
Group Proposal, December 1992.

16. Prieto-Diaz, Ruben. "Domain Analysis for Reusability." Proceedings of the COMP-
SAC '87. 23-29. 1987.

145

17. Prieto-Diaz, Ruben. "Domain Analysis: An Introduction," Software Engineering
Notes, 15(2):47-45 (April 1990).

18. Randour, Mary Ann. Creating and Manipulating a Domain-Specific Formal Object
Base to Support a Domain-Oriented Application and Composition System. MS the-
sis, AFIT/GCS/ENG/92D-13, School of Engineering, Air Force Institute of Technol-
ogy(AU), Wright-Patterson AFB, OH, December 1992 (AD-A259018).

19. Reasoning Systems, Inc. DIALECT User's Guide. Palo Alto, CA, July 1990.

20. Reasoning Systems, Inc. REFINE User's Guide. Palo Alto, CA, May 1990.

21. Science Applications International Corporation, Wright Laboratory Avionics Direc-
torate. Simulation Support Environment Architectural Design Team Report, Version
2.0, February 1993.

22. "Bugs in the Program: Problems in Federal Government Computer Software Devel-
opment and Regulation." Committee on Science, Space, and Technology, U.S. House
of Representatives, December 1989.

23. V.S. Alagax, G. Ramanathan. "Functional Specification and Proof of Correctness
for Time Dependant Behaviour of Reactive Systems," Formal Aspects of Computing,
3(3):253-283 (Jul-Sep 1991).

24. Waggoner, Robert W. Domain Modeling of Time-Dependent Systems. MS thesis,
AFIT/GCS/ENG/93D-23, School of Engineering, Air Force Institute of Technol-
ogy(AU), Wright-Patterson AFB, OH, December 1993.

25. Warner, Russell M. A Method for Populating the Knowledge Base of A FIT's Domain-
Oriented Application Composition System. MS thesis, AFIT/GCS/ENG/93D-24,
School of Engineering, Air Force Institute of Technology(AU), Wright-Patterson AFB,
OH, December 1993.

26. Warner, Russell M. "The Theory Behind Software Application Generation at AFIT."
COMM 680 Briefing, May 93.

27. Whitted, Gary A. Software Development Plan for the J-MASS Modeling Components
- Vol I1. Architectural Technical Working Group, ASD/RWWW, April 1992.

28. Will Tracz, Lou Coglianese and Patrick Young. "A Domain-Specific Software Archi-
tecture Engineering Process." From Collected Papers of the Domain-Specific Software
Architectures (DSSA) Avionics Domain Application Environment (ADAGE), May 93.

29. Young, Frank Charles Duane. Creating a Real Time System Using Reacto. MS the-
sis, AFIT/ENG/GCS/92D-24, School of Engineering, Air Force Institute of Technol-
ogy(AU), Wright-Patterson AFB, OH, December 1992 (AD-A259224).

146

Vita

Captain Bob Welgan was born on May 21, 1965 in Dover, Delaware. He attended

Caesar Rodney Senior High School in nearby Camden, Delaware. Captain Welgan attended

the University of Maryland, College Park after graduation from high school in 1983. In

1984, he entered the United States Air Force Academy, where he earned a Bachelor of

Science in Computer Science. From 1988 until 1992, Captain Welgan worked in the Space

Surveillance Program Office at Los Angeles AFB, California. He entered the Air Force

Institute of Technology in May 1992.

Permanent address: 222 North State Street
Dover, Delaware 19901

147

FOrin Appoved
REPORT DOCUMENTATION PAGE Orm 0704-0o18

- Nm r~ qpon nq rd1n for this ~ofleclty of nlfolrmalonl ,, e~tgmat•ed to avera• e I hour e re re "on. includ•ng the time tor reviewing instructions. search•ng existnin data wurCe.atherig and mas~ta~fltfln the daol ne e, and € rng and ew ing t olectiOn of information Send comments regarding thi burden estimate or AnV other & t of this
collection of information. ninuding suggaytions for reducing this ourden to Washington HeidGaarters Serces,. Oirectorate for infor•ation Operations, and Rteporl•, 1215 jefferson
Oasis HIghway, Suite 1204. Arlington, VA 22202-4302. and to the Otlice of Management and Budget. Paperwork Reduction Project (0704-01N). Washington. DC 20503

1. AGENCY USE ONLY (Leave blank) 1 REPORT DATE 3. REPORT TYPE AND DATES COVERED
De e 1993 Master's Thesis

4' TITLE AND SUBTITLE S. FUNDING NUMBERS
DOMAIN ANALYSIS AND MODELING
OF A MODEL-BASED SOFTWARE EXECUTIVE

4. AUTHOR(S)
Robert L. Welgan, Capt, USAF

7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) 8. PERFORMING ORGANIZATION
Air Force Institute of Technology, WPAFB OH 45433-6583 REPORT NUMBER

AFIT/GCS/ENG/93D-25

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADORESS(ES) 10. SPONSORING / MONITORING
Capt Rick Painter AGENCY REPORT NUMBER
2241 Avionics Circle, Suite 16
WL/AAWA-1 BLD 620
Wright-Patterson AFB, OH 45433-7765

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; Distribution Unlimited

11, ABSTRACT (Maximum 200 words)This research adapted the domain analysis techniques of Preto-Doaz and Tracz to specify a domain analysis process
which was used to conduct domain analysis over the domain of software executives. This analysis created a set of
informal and formal domain model artifacts. The domain model artifacts were instantiated into two application
executive subsystems. These executive subsystems operated in Architect, a domain-oriented application composition
system based on the Object-Connection-Update (OCU) model. This research demonstrated and evaluated execution
of the instantiated executive domain model in a series of event-driven and time-driven applications. As a consequence
of developing the application executive for Architect, this research proposes additions to the OCU model.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Software Engineering, Operating Systems, Knowledge Based Systtms, Domain Mod- 158
eling, Domain-Specific Languages, Application Composition Systems 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
UEOF TIlS PAGE OF ABSTRACT

UdeffRXSED UNCLASSIFIED UNCLASSIFIED UL
NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)

Prescribed by ANSI Std Z39-18

298-102

GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important
that this information be consistent with the rest of the report, particularly the cover and title page.
Instructions for filling in each block of the form follow. It is important to stay within the lines to meet
optical scanning requirements.

Block 1. Aqency Use Only (Leave blank). Block 12a. Distribution/Availability Statement.
Denotes public availability or limitations. Cite any

Block 2. Report Date. Full publication date availability to the public. Enter additional
including day, month, and year, if available (e.g. 1 limitations or special markings in all capitals (e.g.
Jan 88). Must cite at least the year. NOFORN, REL, ITAR).

Block 3. Type of Report and Dates Covered. DOD - See DoDD 5230.24, Distribution
State whether report is interim, final, etc. If See o n Technical
applicable, enter inclusive report dates (e.g. 10 Statements on TechnicalJun 7-3 Ju88)Documents."
Jun 87 - 30 Jun 88). DOE - See authorities.

Block 4. Title and Subtitle. A title is taken from NASA - See Handbook NHB 2200.2.
the part of the report that provides the most NTIS - Leave blank.
meaningful and complete information. When a
report is prepared in more than one volume, Block 12b. Distribution Code.
repeat the primary title, add volume number, and
include subtitle for the specific volume. On
classified documents enter the title classification DOE - Enter DOE distribution categories
in parentheses. from the Standard Distribution for

Block 5. Funding Numbers. To include contract Unclassified Scientific and Technical

and grant numbers; may include program Reports.

element number(s), project number(s), task NASA - Leave blank.

number(s), and work unit number(s). Use the NTIS - Leave blank.
following labels:

C - Contract PR - Project Block 13. Abstract. Include a brief (Maximum
G - Grant TA - Task 200 words) factual summary of the most
PE - Program WU - Work Unit significant information contained in the report.

Element Accession No.

Block 6. Author(s). Name(s) of person(s) Block 14. Subiect Terms. Keywords or phrases
responsible for writing the report, performing identifying major subjects in the report.
the research, or credited with the content of the
report. If editor or compiler, this should follow
the name(s). Block 15. Number of Pages. Enter the total

number of pages.
Block 7. Performing Organization Name(s) and
Address(es). Self-explanatory. Block 16. Price Code. Enter appropriate price

Block 8. Performing Organization Report code (NTIS only).
Number. Enter the unique alphanumeric report
number(s) assigned by the organization Blocks 17.- 19. Security Classifications. Self-
performing the report.

explanatory. Enter U.S. Security Classification in
Block 9. Sponsoring/Monitoring Agency Name(s) accordance with U.S. Security Regulations (i.e.,
and Address(es). Self-explanatory. UNCLASSIFIED). If form contains classified

information, stamp classification on the top and
Block 10. Sponsorinq/Monitorinq Agency bottom of the page.
Report Number. (If known)

Block 11. Supplementary Notes. Enter Block 20. Limitation of Abstract. This block must
information not included elsewhere such as: be completed to assign a limitation to the
Prepared in cooperation with...; Trans. of...; To be abstract. Enter either UL (unlimited) or SAR (same
published in.... When a report is revised, include as report). An entry in this block is necessary if
a statement whether the new report supersedes the abstract is to be limited. If blank, the abstract
or supplements the older report. is assumed to be unlimited.

Standard Form 298 Back (Rev. 2-89)

